Physics, asked by OfficialPk, 3 months ago

In Young's double slit experiment, using monochromatic light of wave length \mathsf{\lambda} , the intensity of light at a point on the screen where path difference is \mathsf{\lambda} is k units. What is the intensity of light at a point where path difference is \mathsf{ \frac{\lambda}{3} \\ } ?


EnchantedBoy: pranay oka sari unblock cheyyi
EnchantedBoy: and manogna na sister kadu...LOL
EnchantedBoy: besst friend
OfficialPk: ikkadey cheppu bro malli chrome loki velli login avvali
EnchantedBoy: meet u clg mama
OfficialPk: ok
EnchantedBoy: ikkada spamming avtundi bro..nenu cheyakudadu
OfficialPk: aagu
EnchantedBoy: ok

Answers

Answered by ITZBFF
0

 \sf{Path  \: difference \: \:   x_{1}} \:  = \lambda  \\

\sf{Intensity \:  I_{1} = K}

 \sf{Path  \: difference \: \:   x_{2}} \:  =  \frac{ \lambda}{3}   \\

\sf{Intensity \:  I_{2} = \: ? }

 \\  \sf{Phase \:  difference  \: \phi _{1} \:  =  \frac{2  \pi}{ \lambda} x_1 \:  =  \frac{2 \pi}{ \lambda} ( \lambda) = 2 \pi } \\  \\ \sf{   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \phi _{2} \:  =  \frac{2  \pi}{ \lambda}  \bigg( \frac{ \lambda}{3} \bigg)  \:  =  \frac{2 \pi}{ 3} }

 \rm{We  \: know \:  that,  \boxed{ \boxed{I = 4 \: I_{0} \:  {cos}^{2} \bigg( \frac{\phi}{2} \bigg)}}} \\

 \frac{I _1}{I _2}  =  \frac{ \:  {cos}^{2} \bigg( \frac{\phi_1}{2} \bigg)}{\:  {cos}^{2} \bigg( \frac{\phi_2}{2} \bigg)}  \\

 \implies \frac{K}{I _2}  =  \frac{ \:  {cos}^{2} \bigg( \frac{2\pi}{2} \bigg)}{\:  {cos}^{2} \bigg( \frac{2 \pi}{3(2)} \bigg)}  \\

 \implies \frac{K}{I _2}  =  \frac{ 1}{ \frac{1}{4} }  \\

 \implies \frac{K}{I _2}  =  4 \\

 \implies \frac{K}{4}  =   I _2\\


OfficialPk: Thank you hazeera
ITZBFF: you're welcome
Answered by XxItzhurterhumanxX
0

Answer:

________________________

Explanation:

Have a good night...

Similar questions