English, asked by omc34719, 9 months ago

In your own words describe how unity under direst circumstances paves way for survival and success you may refer to the chapter we are not afraid to die if we can be together ?​

Answers

Answered by TheValkyrie
6

Answer:

We are not afraid to die if we all can be a together is a real life experience written by a famous sailor Gordon Cook. This story narrates the round the world voyage done by the narrator and his family and how important it is to be optimistic at crucial times

The first part of the narrator's journey was smooth and they did not encounter any trouble. On January 2 after new year, they encountered bad weather and their boat suffered severe damage from a giant wave. The narrator and his family suffered from severe injuries and their condition was pathetic.

On fourth of January their condition slightly improved but on the fifth the situation was again reverted. The boat developed a hole and water started to flow inside. They had to keep the boat afloat by taking turns poring the water out since most of the electric pumps were not working.

Jonathan their son remarked that he was'nt afraid of dying if they could all die together. Sue, their daughter showed her appreciation and support by drawing funny caricatures of her parents and making a card for them. She did'nt even inform them when she got a bump on her head and a deep cut on her arm because she did'nt want to worry her parents who were so busy saving their lives.

All the members of the ship were courageous and determined and gave full support to each other. Their survival was only possible because of their unity and optimistic attitude. Even the children were'nt afraid and kept their cool in the grave and dire situations. They did not have a thought of giving up and was calm throughout the crisis. The children had faith in their father that he would save them. Because of these qualities the family was to able to survive the voyage and return home.

Answered by abdulrubfaheemi
0

Answer:

Answer:

Explanation:

\Large{\underline{\underline{\it{Given:}}}}

Given:

\sf{\dfrac{tan\:A}{sec\:A-1} -\dfrac{sin\:A}{1+cos\:A} =2\:cot\:A}

secA−1

tanA

1+cosA

sinA

=2cotA

\Large{\underline{\underline{\it{To\:Prove:}}}}

ToProve:

LHS = RHS

\Large{\underline{\underline{\it{Solution:}}}}

Solution:

→ Taking the LHS of the equation,

\sf{LHS=\dfrac{tan\:A}{sec\:A-1} -\dfrac{sin\:A}{1+cos\:A} }LHS=

secA−1

tanA

1+cosA

sinA

→ Applying identities we get

=\sf{\dfrac{\dfrac{sin\:A}{cos\:A} }{\dfrac{1}{cos\:A}-1 } -\dfrac{sin\:A}{1+cos\:A} }=

cosA

1

−1

cosA

sinA

1+cosA

sinA

→ Cross multiplying,

=\sf{\dfrac{\dfrac{sin\:A}{cos\:A} }{\dfrac{1-cos\:A}{cos\:A} } -\dfrac{sin\:A}{1+cos\:A} }=

cosA

1−cosA

cosA

sinA

1+cosA

sinA

→ Cancelling cos A on both numerator and denominator

=\sf{\dfrac{sin\:A}{1-cos\:A} -\dfrac{sin\:A}{1+cos\:A}}=

1−cosA

sinA

1+cosA

sinA

→ Again cross multiplying we get,

=\sf{\dfrac{sin\:A(1+cos\:A)-sin\:A(1-cos\:A)}{(1+cos\:A)(1-cos\:A)}}=

(1+cosA)(1−cosA)

sinA(1+cosA)−sinA(1−cosA)

→ Taking sin A as common,

\sf{=\dfrac{sin\:A[1+cos\:A-(1-cos\:A)]}{(1^{2}-cos^{2}\:A ) }}=

(1

2

−cos

2

A)

sinA[1+cosA−(1−cosA)]

\sf{=\dfrac{sin\:A[1+cos\:A-1+cos\:A]}{sin^{2}\:A } }=

sin

2

A

sinA[1+cosA−1+cosA]

→ Cancelling sin A on both numerator and denominator

\sf{=\dfrac{2\:cos\:A}{sin\:A} }=

sinA

2cosA

\sf=2\times \dfrac{cos\:A}{sin\:A} }

\sf{=2\:cot\:A}=2cotA

=\sf{RHS}=RHS

→ Hence proved.

\Large{\underline{\underline{\it{Identitites\:used:}}}}

Identititesused:

\sf{tan\:A=\dfrac{sin\:A}{cos\:A} }tanA=

cosA

sinA

\sf{sec\:A=\dfrac{1}{cos\:A} }secA=

cosA

1

\sf{(a+b)\times(a-b)=a^{2}-b^{2} }(a+b)×(a−b)=a

2

−b

2

\sf{(1-cos^{2}\:A)=sin^{2} \:A}(1−cos

2

A)=sin

2

A

\sf{\dfrac{cos\:A}{sin\:A}=cot\:A}

sinA

cosA

=cotA

Similar questions