Math, asked by ravindra41, 1 month ago

InABC, AD perpendicular to BC and BE perpendicular to AC. If BC = 16 cm, AD = 6 cm and BE = 8 cm, then find AC.​

Answers

Answered by pavansaichimma
0

Answer:

10cm

Step-by-step explanation:

Using pythagoras theorem:

16cm can be divided as 8cm and 8 cm

And hence AC would be:

8^{2}+6^{2} = AC

64 + 36 = 100

Hence, AC = \sqrt{100}= 10 cm

Answered by Anonymous
5

Answer:

 \large{ \sf{ \underline{ \underline \color{blue}{☆ Question}}}}

In ∆ ABC, AD

\perp BC and BE \perp AC. If BC = 16 cm, AD = 6 cm and BE = 8 cm, then find AC.

 \large{ \sf{ \underline{ \underline \pink{☆Answer}}}}

 \large{ \bf{ \underline{To \: find :}}}

Value of side AC.

 \large{ \bf{ \underline{Given :}}}

 \bf \: AD \perp BC

 \bf \: BE \perp AC

 \bf \: BC = 16 cm

 \bf \: AD = 6 cm

 \bf \: BE = 8 cm

 \large{ \bf{ \underline{Solⁿ :}}}

 { \boxed{ \sf{ \dag{ \: Area \:  of  \: triangle =  \frac{1}{2}  \times b \times h}}}}

Area of this triangle

 \sf \frac{1}{2}  \times AD \times BC   =  \frac{1}{2}  \times BE \times AC

 \sf \frac{1}{2}  \times 6cm \times 16cm   =  \frac{1}{2}  \times 8cm \times AC

 \sf 48cm {}^{2}  =  \frac{1}{2}  \times 8cm \times AC

 \sf \: AC =  \frac{48cm {}^{2} }{4cm}

 \sf ∴ AC =  12cm

 \sf \: Hope \:  it  \: helps  \: you...

 \huge{ \underline{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: }}

Similar questions