Math, asked by simmiyadavsimm76, 5 days ago

indefinite integration cosec²(3x+2)dx​

Answers

Answered by anindyaadhikari13
15

Solution:

Given Integral:

 \displaystyle \rm \longrightarrow I =  \int cosec^{2} (3x +2 ) \:  dx

Let us assume that:

 \displaystyle \rm \longrightarrow u = 3x + 2

 \displaystyle \rm \longrightarrow du = 3 \: dx

 \displaystyle \rm \longrightarrow dx = \dfrac{du}{3}

Therefore, we have:

 \displaystyle \rm \longrightarrow I =  \int  \dfrac{1}{3} cosec^{2} (u) \:  du

 \displaystyle \rm \longrightarrow I =   \dfrac{1}{3} \int cosec^{2} (u) \:  du

 \displaystyle \rm \longrightarrow I =   \dfrac{1}{3} \times  -  \cot(u) +  C

 \displaystyle \rm \longrightarrow I =   \dfrac{ - \cot(u) }{3}+  C

Substituting the value of u, we get:

 \displaystyle \rm \longrightarrow I =   \dfrac{ - \cot(3x +2 ) }{3}+  C

★ Which is our required answer.

Learn More:

\boxed{\begin{array}{c|c}\bf f(x)&\bf\displaystyle\int\rm f(x)\:dx\\ \\ \frac{\qquad\qquad}{}&\frac{\qquad\qquad}{}\\ \rm k&\rm kx+C\\ \\ \rm sin(x)&\rm-cos(x)+C\\ \\ \rm cos(x)&\rm sin(x)+C\\ \\ \rm{sec}^{2}(x)&\rm tan(x)+C\\ \\ \rm{cosec}^{2}(x)&\rm-cot(x)+C\\ \\ \rm sec(x)\  tan(x)&\rm sec(x)+C\\ \\ \rm cosec(x)\ cot(x)&\rm-cosec(x)+C\\ \\ \rm tan(x)&\rm log(sec(x))+C\\ \\ \rm\dfrac{1}{x}&\rm log(x)+C\\ \\ \rm{e}^{x}&\rm{e}^{x}+C\\ \\ \rm x^{n},n\neq-1&\rm\dfrac{x^{n+1}}{n+1}+C\end{array}}

Answered by Anonymous
36

 { \underline{ \large{ \sf{Solution}}}}

To Evaluate :

\displaystyle \rm \longrightarrow I = \int cosec^{2} (3x +2 )dx

Putting 3x+2=t

 { \displaystyle{  \rm{ \implies \: 3dx = dt}}}

 { \displaystyle{  \rm{ \implies \: dx =  \frac{dt}{3} }}}

 { \displaystyle{  \rm{ \implies \:  \therefore \:  \int \:  \cosec {}^{2} t \frac{dt}{3}  }}}

 { \displaystyle{  \rm{ \implies \:  =   -  \frac{ 1}{3} \cot \: t \:  + c  }}}

\bigstar { \displaystyle{  \rm{ \implies \:  =   -  \frac{ 1}{3} \cot \: (3x + 2) \:  + c  }}}

{ \underline{ \underline{\rule{200pt}{5pt}}}}

Similar questions