Math, asked by kthaiyalnayaki2020, 1 month ago

indegrate w.r.t X, 1/[xlogxlog(logx)]​

Answers

Answered by pulakmath007
6

SOLUTION

TO DETERMINE

 \displaystyle \sf{ \int\limits_{}^{}  \:   \frac{1}{x logx  log( logx )   } \:  \, dx }

EVALUATION

We have to find the value of

 \displaystyle \sf{ \int\limits_{}^{}  \:   \frac{1}{x logx  log( logx )   } \:  \, dx }

 \displaystyle \sf{Let \:  \: z \:   =  log( logx )  }

Differentiating both sides with respect to x we get

 \displaystyle \sf{ \frac{dz}{dx}   =    \frac{d}{dx} \:  log( logx )  }

 \displaystyle \sf{  \implies \: \frac{dz}{dx}   =   \frac{1}{ logx}   \:  \frac{d}{dx} \:  ( logx )  }

 \displaystyle \sf{  \implies \: \frac{dz}{dx}   =   \frac{1}{ logx}   \:  \frac{1}{x} \: }

 \displaystyle \sf{  \implies \: \frac{dz}{dx}   =   \frac{1}{x logx}   \:   }

 \displaystyle \sf{  \implies \: dz =   \frac{1}{x logx}  dx \:   }

Now

 \displaystyle \sf{ \int\limits_{}^{}  \:   \frac{1}{x logx  log( logx )   } \:  \, dx }

 \displaystyle \sf{ =  \int\limits_{}^{}  \:   \frac{1}{z } \:  \, dz }

 \displaystyle \sf{ =  log  \: z + c  }

 \displaystyle \sf{ =  log   (log( logx )) + c  }

Where C is integration constant

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. Integral (7cos^3x+8sin^3x)÷3sin^2xcos^2x

https://brainly.in/question/19287036

2. If integral of (x^-3)5^(1/x^2)dx=k5^(1/x^2), then k is equal to?

https://brainly.in/question/15427882

Similar questions