indices: a²+(p+1/p)a+1
Answers
Answered by
0
Answer:
a²+(p+1/p)a+1=0 ➜ a²+a(p²/p+1/p)+1 ->
By Shreedharacharya's rule,
a= {-(p+1/p)±√[(p²+1/p²+2p×1/p)-4]}/2
→ a= {-(p+1/p)± √[(p²+1/p²+2-4)]}/2
→ a= {-(p+1/p)±√[(p²+1/p²-2]}/2
→ a= [-(p+1/p)± √(p-1/p)²]/2
→ a= [-(p+1/p)±(p-1/p)]/2
= [(-p-1/p)±(p-1/p)]/2
⇒a=
= [(-p-1/p)+(p-1/p)]/2, [(-p-1/p) ⇒a=
(p-1/p)]/2
→ a= (-p-1/p+p-1/p)/2, (-p-1/p- p+1/p)/2
a= (-1/p-1/p)/2, (-p-p)/2
→ a= (-2/p)/2, (-2p)/2
→ a= (-1/p), (-p)
Similar questions