INECUASION
21x²>x+12
Answers
⠀ ⠀⠀ ⠀ ⠀⠀ ⠀
⠀⠀ ⠀ ⠀⠀ ⠀
⠀⠀ ⠀ ⠀⠀ ⠀
⠀ ⠀⠀ ⠀ ⠀⠀ ⠀
⠀ ⠀⠀ ⠀ ⠀⠀ ⠀
⠀⠀ ⠀ ⠀⠀ ⠀
Step-by-step explanation:
\huge\tt{Answer:-}Answer:−
\sf \color{fuchsia} x > +\dfrac{\sqrt{1009}}{42} + \dfrac{1}{42}x>+
42
1009
+
42
1
\sf \color{fuchsia} oror
\sf \color{fuchsia} x > -\dfrac{\sqrt{1009}}{42} + \dfrac{1}{42}x>−
42
1009
+
42
1
⠀ ⠀⠀ ⠀ ⠀⠀ ⠀
\huge\tt{Solution:-}Solution:−
\sf 21x² > x + 1221x²>x+12
⠀⠀ ⠀ ⠀⠀ ⠀
\sf By \: dividing \: both \: sides \: by \: 21Bydividingbothsidesby21
\sf \dfrac{21x²}{21} > \dfrac{x+12}{21}
21
21x²
>
21
x+12
\sf \dfrac{\cancel{21}x²}{\cancel{21}} > \dfrac{x}{21} + \dfrac{12}{21}
21
21
x²
>
21
x
+
21
12
\sf x² > \dfrac{x}{21} + \dfrac{\cancel{12}^{4}}{\cancel{21}_{7}}x²>
21
x
+
21
7
12
4
\sf x² > \dfrac{x}{21} + \dfrac{4}{7}x²>
21
x
+
7
4
\sf x² - \dfrac{x}{21} > \dfrac{4}{7}x²−
21
x
>
7
4
⠀⠀ ⠀ ⠀⠀ ⠀
\sf By \: adding \: (\dfrac{-1}{2} × coefficient \: of \: x)² \: to \: both \: sidesByadding(
2
−1
×coefficientofx)²tobothsides
\sf Here \: (\dfrac{-1}{2} × coefficient \: of \: x)² = (\dfrac{-1}{2} × \dfrac{-1}{21})²Here(
2
−1
×coefficientofx)²=(
2
−1
×
21
−1
)²
\sf = (\dfrac{1}{42})²=(
42
1
)²
⠀ ⠀⠀ ⠀ ⠀⠀ ⠀
\sf \implies x² - \dfrac{x}{21} + (\dfrac{1}{42})² > \dfrac{4}{7} + (\dfrac{1}{42})²⟹x²−
21
x
+(
42
1
)²>
7
4
+(
42
1
)²
\sf \implies x² - 2 × x × \dfrac{1}{42} + (\dfrac{1}{42})² > \dfrac{4}{7} + \dfrac{1}{1764}⟹x²−2×x×
42
1
+(
42
1
)²>
7
4
+
1764
1
\sf \implies (x - \dfrac{1}{42})² > \dfrac{1008}{1764} + \dfrac{1}{1764}⟹(x−
42
1
)²>
1764
1008
+
1764
1
\sf \implies (x - \dfrac{1}{42})² > \dfrac{1008+1}{1764}⟹(x−
42
1
)²>
1764
1008+1
\sf \implies (x - \dfrac{1}{42})² > \dfrac{1009}{1764}⟹(x−
42
1
)²>
1764
1009
\sf \implies (x - \dfrac{1}{42}) > ±\sqrt{\dfrac{1009}{1764}}⟹(x−
42
1
)>±
1764
1009
\sf \implies x - \dfrac{1}{42} > ±\sqrt{\dfrac{1009}{(42)²}}⟹x−
42
1
>±
(42)²
1009
\sf \implies x - \dfrac{1}{42} > ±\dfrac{\sqrt{1009}}{42}⟹x−
42
1
>±
42
1009
\sf \implies x > ±\dfrac{\sqrt{1009}}{42} + \dfrac{1}{42}⟹x>±
42
1009
+
42
1
⠀ ⠀⠀ ⠀ ⠀⠀ ⠀
\boxed{\sf x > ±\dfrac{\sqrt{1009}}{42} + \dfrac{1}{42}}
x>±
42
1009
+
42
1
⠀⠀ ⠀ ⠀⠀ ⠀
\sf \color{fuchsia} Therefore, \: x > +\dfrac{\sqrt{1009}}{42} + \dfrac{1}{42}Therefore,x>+
42
1009
+
42
1
\sf \color{fuchsia} oror
\sf \color{fuchsia} x > -\dfrac{\sqrt{1009}}{42} + \dfrac{1}{42}x>−
42
1009
+
42
1