inegral of root tanx - root cotx
Answers
Answered by
2
∫π20tanx−−−−√dx+cotx−−−−√dx∫0π2tanxdx+cotxdx
=∫π20sinx+cosxsinxcosx−−−−−−−−√dx=∫π20sinx+cosx2sinxcosx√2√dx=2–√∫π20sinx+cosx1−(1−2sinxcosx)−−−−−−−−−−−−−−−−−√dx=∫0π2sinx+cosxsinxcosxdx=∫0π2sinx+cosx2sinxcosx2dx=2∫0π2sinx+cosx1−(1−2sinxcosx)dx
=2–√∫π20sinx+cosx1−(sinx−cosx)2−−−−−−−−−−−−−−−√dx=2∫0π2sinx+cosx1−(sinx−cosx)2dx
hope it is use full
Let t=sinx−cosxt=sinx−cosx , dx=dtsinx+cosxdx=dtsinx+cosx
x→π2⟹t=(sinx−cosx)→1x→π2⟹t=(sinx−cosx)→1 x→0⟹t=(sinx−cosx)→−1x→0⟹t=(sinx−cosx)→−1 2–√∫1−111−t2−−−−−√dt=2–√[sin−1t]1−1=2–√[π2−(−π2)]=2–√π2∫−1111−t2dt=2[sin−1t]−11=2[π2−(−π2)]=2πhope it is use full
Similar questions