Math, asked by sameershaikh0738, 3 months ago

inigrate the function given above​

Attachments:

Answers

Answered by mathdude500
3

\begin{gathered}\Large{\bold{\pink{\underline{Formula \:  Used \::}}}}  \end{gathered}

 \boxed{\tt \:  ⟼1. \: \tt \:  ⟼ \int {x}^{n}  \: dx \:  = \dfrac{ {x}^{n + 1} }{n + 1}  + c}

 \boxed{\tt \:  ⟼2. \: \tt \:  ⟼ \int  \dfrac{1}{x}   \: dx \:  =  log(x)  + c}

─━─━─━─━─━─━─━─━─━─━─━─━─

\tt \:  ⟼Let \:  I =  \int \: \dfrac{dx}{ {x}^{ \frac{1}{2} }  +  {x}^{ \frac{1}{3} } }

─━─━─━─━─━─━─━─━─━─━─━─━─

\tt \:  ⟼ \: Put \: x =  {y}^{6}  \:  \: (l.c.m \: of \: 2 \: and \: 3)

\tt \:  ⟼ \: \dfrac{d}{dx}x \:  = \dfrac{d}{dx} {y}^{6}

\tt \:  ⟼ \: 1 =  {6y}^{5} \dfrac{dy}{dx}

\tt \:  ⟼dx \:  =  {6y}^{5} dy

─━─━─━─━─━─━─━─━─━─━─━─━─

\tt\implies \: \: I = \tt \:  ⟼ \int\dfrac{ {6y}^{5}dy }{ {y}^{3}  +  {y}^{2} }

\tt\implies \: \: I = \tt \:  ⟼ 6\int\dfrac{ {y}^{5}dy }{ {y}^{2} (y + 1)}

\tt\implies \: \: I = \tt \:  ⟼6 \int\dfrac{ {y}^{3} \:  dy}{y + 1}

\tt\implies \: \: I = \tt \:  ⟼6 \int\dfrac{ {y}^{3} + 1 - 1 }{y + 1} \:  \:  dy

\tt\implies \: \: I = \tt \:  ⟼6 \int\dfrac{(y + 1)( {y}^{2}  + 1 - y) - 1}{y + 1}  \:  \: dy

\tt \:  ⟼ \bigg( \: using \:  {x}^{3}  +  {y}^{3}  = (x + y) ({x}^{2}  - xy +  {y}^{2} ) \bigg)

\tt\implies \: \: I = \tt \:  ⟼ 6\int\ \bigg( {y}^{2}   + 1 - y - \dfrac{1}{y + 1} \bigg)dy

\tt \:  ⟼ \: I = \dfrac{ {y}^{3} }{3}  + y - \dfrac{ {y}^{2} }{2}  -  log(1 + y)  + c

\tt \:  ⟼on \: substituting \: y \:  =  {x}^{ \frac{1}{6} } we \: get

\tt \:  ⟼ \: I = \dfrac{ {x}^{ \frac{1}{2} } }{3}  +  {x}^{ \frac{1}{6} }  - \dfrac{ {x}^{ \frac{1}{3} } }{2}  -  log(1 +  {x}^{ \frac{1}{6} } )  + c

─━─━─━─━─━─━─━─━─━─━─━─━─

Similar questions