Math, asked by XxVampireXx7, 1 month ago

initial velocity = 0m/s distance =400m time=16sec find the acceleration

Answers

Answered by Anonymous
7

Given :-

  • ➊ Initial velocity of body = 0 m/s
  • ➋ Distance travelled = 400 m
  • ➌ Time taken = 16 sec

To Find :-

  • ➊ Acceleration of the body

Solution :-

By using Law of motion

 \large \longmapsto \underline { \boxed{\red{ \bf s = ut + \frac{1}{2 } a {t}^{2}}}} \\

Here :-

  • s = Distance
  • u = Initial velocity
  • t = time
  • a = acceleration

Substitute values in formula

 :\implies \sf400 = 0 \times 16 +  \frac{1}{2}  \times a \times  {(16)}^{2} \\

:\implies\sf400 =  \frac{1}{2} \times a \times 256 \\

:\implies\sf400 = a \times 128 \\

:\implies\sf a = \frac{400}{128}  \\

:\implies\sf a = 3.125 \:  {ms}^{ - 2} \\

\large\therefore \underline{\bf \green{Acceleration\: of \: body = 3.125 \:  m/s}} \\

Answered by manjupjha2409
1

Answer:

❒ Given :-

➊ Initial velocity of body = 0 m/s

➋ Distance travelled = 400 m

➌ Time taken = 16 sec

❒ To Find :-

➊ Acceleration of the body

❒ Solution :-

By using Law of motion

\begin{gathered} \large \longmapsto \underline { \boxed{\red{ \bf s = ut + \frac{1}{2 } a {t}^{2}}}} \\ \end{gathered}

s=ut+

2

1

at

2

Here :-

s = Distance

u = Initial velocity

t = time

a = acceleration

★ Substitute values in formula

\begin{gathered} :\implies \sf400 = 0 \times 16 + \frac{1}{2} \times a \times {(16)}^{2} \\ \end{gathered}

:⟹400=0×16+

2

1

×a×(16)

2

\begin{gathered}:\implies\sf400 = \frac{1}{2} \times a \times 256 \\ \end{gathered}

:⟹400=

2

1

×a×256

\begin{gathered}:\implies\sf400 = a \times 128 \\ \end{gathered}

:⟹400=a×128

\begin{gathered}:\implies\sf a = \frac{400}{128} \\ \end{gathered}

:⟹a=

128

400

\begin{gathered}:\implies\sf a = 3.125 \: {ms}^{ - 2} \\ \end{gathered}

:⟹a=3.125ms

−2

\begin{gathered}\large\therefore \underline{\bf \green{Acceleration\: of \: body = 3.125 \: m/s}} \\\end{gathered}

Accelerationofbody=3.125m/s

Step-by-step explanation:

Hope it helps you

Similar questions