Math, asked by craftiideas69, 5 months ago

inner and Outer radii of a pipe are 3 cm and 3.5 CM respectively if the length of pipe is is 8 cm find total surface area​

Answers

Answered by Anonymous
41

QUESTION

inner and Outer radii of a pipe are 3 cm and 3.5 CM respectively if the length of pipe is is 8 cm find total surface area

GIVEN

inner radius =3cm

outer radius =3.5cm

FIND

find total surface area =?

ANSWER

 \large  \sf 347.27cm^2

ㅤㅤㅤㅤㅤㅤ▬▬▬▬▬ ◆ ▬▬▬▬▬ ㅤㅤㅤㅤㅤㅤ

ㅤㅤㅤㅤㅤㅤㅤㅤEXPLANATION

ㅤㅤㅤㅤㅤㅤ▬▬▬▬▬ ◆ ▬▬▬▬▬

Inner surface area =2πrh

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \implies 2 \times  \frac{22}{7}  \times 3\times 8\\

\:  \:  \:  \:  \:  \:  \:  \:  \:  \implies \frac{44}{7}  \times 24\\

\:  \:  \:  \:  \:  \:  \:  \:  \:  \implies 150.85 {cm}^{2}

Outer surface area =2πrh

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \implies 2 \times  \frac{22}{7}  \times 3.5\times 8\\

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \implies \frac{44}{7}  \times 28

\:  \:  \:  \:  \:  \:  \:  \:  \:  \implies44 \times 4

\:  \:  \:  \:  \:  \:  \:  \:  \:  \implies 176 {cm}^{2}

Area of top and bottom circle -

\:  \:  \:  \:  \:  \:  \:  \:  \: \: \implies 2\times \pi (r_{1}^2-r_{2})\\\\ \:  \:  \:  \:  \:  \:  \:  \:  \: \: \implies 2 \times \frac{22}{7}(3.5^{2}-3^{2})\\\\ \:  \:  \:  \:  \:  \:  \:  \:  \: \: \implies \frac{44}{7} \times (12.25 - 9)\\\\ \:  \:  \:  \:  \:  \:  \:  \:  \: \: \implies \frac{44}{7}\times 3.25\\\\ \:  \:  \:  \:  \:  \:  \:  \:  \: \: \implies 20.42 cm^2

Total surface area =Add all the areas

\:  \:  \:  \:  \:  \:  \:  \:  \:  \implies 150.85 + 176+ 20.42

\:  \:  \:  \:  \:  \:  \:  \:  \:  \implies 347.27  {cm}^{2}

Answered by BrainlyConqueror0901
103

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{T.S.A \: of \: pipe =347.3 { \: cm}^{2}}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

\green{\underline{\bold{Given :}}} \\  \tt:  \implies Outer \: radii (r_{2})= 3.5 \: cm \\  \\  \tt:  \implies Inner \: radii (r_{1})= 3 \: cm \\  \\ \tt:  \implies Height \: of \: pipe(h) = 8 \: cm \\  \\ \red{\underline{\bold{To \: Find :}}} \\  \tt:  \implies Total \: surface \: area \: of \: pipe = ?

• According to given question :

 \bold{As \: we \: know \: that} \\  \tt:  \implies C.S.A \: of \: inner \: pipe = 2\pi  r_{1}h \\  \\ \tt:  \implies C.S.A \: of \: inner \: pipe =2 \times  \frac{22}{7}  \times 3 \times 8 \\  \\ \tt:  \implies C.S.A \: of \: inner \: pipe =150.9 \:  {cm}^{2}-----(1)  \\  \\  \bold{Again : } \\ \tt:  \implies C.S.A \: of \: outer \: pipe =2\pi  r_{2}h \\  \\ \tt:  \implies C.S.A \: of \: outer \: pipe =2 \times  \frac{22}{7}  \times 3.5 \times 8 \\  \\ \tt:  \implies C.S.A \: of \: outer \: pipe =2 \times 22 \times 0.5 \times 8 \\  \\ \tt:  \implies C.S.A \: of \: outer \: pipe =176 \:  {cm}^{2} -----(2) \\  \\  \bold{As \: we \: know \: that} \\  \tt:  \implies Area \: of \: top \: circle + bottom \: circle = \pi ({ r_{2}}^{2}  -  r_{1}^{2} ) \\  \\ \tt:  \implies Area \: of \: top \: circle + bottom \: circle = 2\times\frac{22}{7} ( {3.5}^{2}  -  {3}^{2} ) \\  \\ \tt:  \implies Area \: of \: top \: circle + bottom \: circle = 2\times\frac{22}{7}  \times 3.25 \\  \\ \tt:  \implies Area \: of \: top \: circle + bottom \: circle =20.4\:  {cm}^{2}-----(3)  \\  \\

 \bold{For \: total \: surface \: area} \\  \tt:  \implies T.S.A \: of \: pipe = (1) + (2) + (3) \\  \\ \tt:  \implies T.S.A \: of \: pipe =150.9 + 176 + 20.4 \\  \\ \green{\tt:  \implies T.S.A \: of \: pipe =347.3 { \: cm}^{2} }

Similar questions