inner atomic distance of n14O16 molecule is 115.1pm .calculate : reduced mass, moment of inertia, wave no. of the line corresponding to lowest absorption in m-1 unit, energy in m-1 unit for transition J=2 to J=3
Answers
m1 = 14 u (Nitrogen) m2 =
16 u (Oxygen)
i) Reduced mass = μ = m1
* m2 / (m1 + m2) = 112/15 u
= 1.239 * 10⁻²⁶ kg
Given d = 115.1 pm
ii) I = moment of Inertia = μ d2 (derived from I = m1 d12 + m2 d22 , m1 d1 = m2 d2)
I = 1.239 * 10-26 * (115.1*10-12)2 kg-m2 = 1.641 *10-46 kg-m2
h = 6.626 * 10^-34/2π units
E = Energy in Jth state: J(J+1) h2 / (2I) = J(J+1) h2 / (8 π2 μ d2)
EJ->J+1 = EJ+1 - EJ = (J+1) h2 / I = 2 (J+1) B ,
B = Rotational constant of bond = h2 / (2 I)
B = 6.626^2*10^-68 /(4*π2* 2 *1.641*10^-46) J = 3.388 *10^-23 J
iii) Transition from J = 0 to J = 1 (lowest Absorption)
E_J=0->1 = 2 (0+1) 3.388 * 10^-23 J = 6.776 * 10^-23 J
n_J=0->1 = frequency = E /h = 1.0078 * 10^11 Hz
Wave number in m^-1 = n / c =
= 1.0078 * 10^11 Hz / (3 * 10^8 m/s) = 335.9 m^-1
iv) Transition from J = 2 to J = 3
E_J=2->3 = 2 (J+1) B = 2 * (2+1) * 3.388 * 10^-23 J
= 2.033 * 10^-22 J
frequency corresponding = E/h
wave number = Energy in units of m^-1 = E/(hc)
= 2.033 * 10⁻²² /1.988 *10⁻²⁶ m⁻¹
= 1.022 * 10⁴ m⁻¹