Math, asked by trongbabyqua41776196, 3 months ago

insert the five arithmetic mean between -3 and 25​

Answers

Answered by sharanyalanka7
21

Step-by-step explanation:

\huge\bf\underline\blue{answer}

given,

the series are in A.P

.: common difference is same

to find:

insert the five arithmetic mean between -3 and 25

\huge\fcolorbox{black}{pink}{solution}

the first term of an A.P (a) = -3

last term of an A.P (b) = 25

n = 5

.: we know that common difference (d) = b-a/n+1

d = 25-(-3)/5+1

= 25+3/6

= 28/6

= 14/3

let the series of the A.P be:

-3,A1,A2,A3,A4,A5,25

.: nth term of A.M = a+(n)d

.: A1 = -3+(1)14/3

= -3+14/3

= -9+14/3

= 5/3

.: A1 = 5/3

.: A2 = -3+(2)14/3

= -3+28/3

= -9+28/3

= 19/3

.: A2 = 19/3

A3 = -3+(3)14/3

= -3+42/3

= -9+42/3

= 33/3

= 11

.: A3 = 11

.: A4 = -3+(4)14/3

= -3+56/3

= -9+56/3

= 47/3

.: A4 = 47/3

.: A5 = -3+(5)14/3

= -3+70/3

= -9+70/3

= 61/3

.: A5 = 61/3

Answered by Anonymous
43

\sf{Answer}

Step-by-step-explanation:-

Question :-

insert the five arithmetic mean between -3 and 25

Solution:-

Hence we have to insert 5 A.M's B/W

-3 , 25

So, It is In

Let the 5 arthemetic means be

  • a1
  • a2
  • a3
  • a4
  • a5

So,

-3 , a1 , a2 , a3 , a4 , a5 , 25

First term = a = -3

Last term = b = 25

n = 5 (No.of terms)

Common difference (d) = \sf\dfrac{b- a}{n+1}

So, common difference = \sf\dfrac{25-(-3)}{5+1}

Common difference = \sf\dfrac{28}{6} = \sf\dfrac{14}{3}

Common difference = 14/3

Finding numbers :-

In an A.P

a1 = a + d

a2 = a + 2d

a3 = a + 3d

a4 = a + 4d

a5 = a + 4d

Plugging values of a, d

a1 = -3 + \sf\dfrac{14}{3}

a1 = \sf\dfrac{-9+14}{3}

a1 = \sf\dfrac{5}{3}

________________________

a2 = -3 + 2 × \sf\dfrac{14}{3}

a2 = -3 + \sf\dfrac{28}{3}

a2 = \sf\dfrac{-9+28}{3}

a2 = \sf\dfrac{19}{3}

__________________________

a3 = -3 + 3 × \sf\dfrac{14}{3}

a3 = -3 + \sf\dfrac{42}{3}

a3 = -3 + 14

a3 = 11

_________________________

a4 = -3 + 4 × \sf\dfrac{14}{3}

a4 = -3 + \sf\dfrac{56}{3}

a4 = \sf\dfrac{56-9}{3}

a4 = \sf\dfrac{47}{3}

_________________________

a5 = -3 + 5 × \sf\dfrac{14}{3}

a5 = -3 + \sf\dfrac{70}{3}

a5 = \sf\dfrac{-9+70}{3}

a5 = \sf\dfrac{61}{3}

_______________________________

So, Required 5 AM's are

  • 5/3
  • 19/3
  • 11
  • 47/3
  • 61/3
Similar questions