insert the five arithmetic mean between -3 and 25
Answers
Step-by-step explanation:
given,
the series are in A.P
.: common difference is same
to find:
insert the five arithmetic mean between -3 and 25
the first term of an A.P (a) = -3
last term of an A.P (b) = 25
n = 5
.: we know that common difference (d) = b-a/n+1
d = 25-(-3)/5+1
= 25+3/6
= 28/6
= 14/3
let the series of the A.P be:
-3,A1,A2,A3,A4,A5,25
.: nth term of A.M = a+(n)d
.: A1 = -3+(1)14/3
= -3+14/3
= -9+14/3
= 5/3
.: A1 = 5/3
.: A2 = -3+(2)14/3
= -3+28/3
= -9+28/3
= 19/3
.: A2 = 19/3
A3 = -3+(3)14/3
= -3+42/3
= -9+42/3
= 33/3
= 11
.: A3 = 11
.: A4 = -3+(4)14/3
= -3+56/3
= -9+56/3
= 47/3
.: A4 = 47/3
.: A5 = -3+(5)14/3
= -3+70/3
= -9+70/3
= 61/3
.: A5 = 61/3
Step-by-step-explanation:-
Question :-
insert the five arithmetic mean between -3 and 25
Solution:-
Hence we have to insert 5 A.M's B/W
-3 , 25
So, It is In
Let the 5 arthemetic means be
- a1
- a2
- a3
- a4
- a5
So,
-3 , a1 , a2 , a3 , a4 , a5 , 25
First term = a = -3
Last term = b = 25
n = 5 (No.of terms)
Common difference (d) =
So, common difference =
Common difference = =
Common difference = 14/3
Finding numbers :-
In an A.P
a1 = a + d
a2 = a + 2d
a3 = a + 3d
a4 = a + 4d
a5 = a + 4d
Plugging values of a, d
a1 = -3 +
a1 =
a1 =
________________________
a2 = -3 + 2 ×
a2 = -3 +
a2 =
a2 =
__________________________
a3 = -3 + 3 ×
a3 = -3 +
a3 = -3 + 14
a3 = 11
_________________________
a4 = -3 + 4 ×
a4 = -3 +
a4 =
a4 =
_________________________
a5 = -3 + 5 ×
a5 = -3 +
a5 =
a5 =
_______________________________
So, Required 5 AM's are
- 5/3
- 19/3
- 11
- 47/3
- 61/3