Math, asked by princenannepaga143, 8 months ago

instigation of sin 5x cos 2x dx​

Answers

Answered by kittu4927
3

Step-by-step explanation:

it helps you ok give thx

Attachments:
Answered by Anonymous
2

Given ,

The function is Sin(5x)Cos(2x)

Integrating wrt to x , we get

 \tt \implies \int{Sin(5x)Cos(2x)} \:  \: dx

Multiplying numerator and denominator by 2 , we get

 \tt \implies \int{ \frac{2Sin(5x)Cos(2x)}{2} } \:  \: dx

 \tt \implies \frac{1}{2} \int{2Sin(5x)Cos(2x)} \:  \: dx

 \tt \implies \frac{1}{2} \int{Sin(7x) + Cos(3x)} \:  \: dx

 \tt \implies \frac{1}{2} \{ \int{Sin(7x) \:  \: dx + \int Sin(3x)} \:  \: dx \}

 \tt \implies \frac{1}{2} \{ -   \frac{ Cos(7x)}{7} </p><p>- \frac{Cos(3x)}{3} \} + c

 \tt \implies -   \frac{ Cos(7x)}{14} - \frac{Cos(3x)}{6} + c

Remmember :

 \tt \mapsto 2Sin(x)Cos(y) = Sin(x + y) +Sin(x  -  y)

_______________ Keep Smiling

Similar questions