Math, asked by ujjwal5817, 2 months ago

int_(0)^( infinity )e^(-a^(2)x^(2)dx)`​

Attachments:

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

We know that,

By definition of gamma function, we have

 \boxed{\displaystyle\int_0^ \infty  \tt \: {e}^{ - x} {x}^{n - 1}  =  \Gamma  n}

and

 \boxed{ \bf \Gamma \: \dfrac{1}{2}  \:  =  \sqrt{\pi} }

Consider,

\rm :\longmapsto\:Let \: I \:  = \displaystyle\int _{0}^\infty \sf \:  {e}^{ -  {a}^{2} {x}^{2}}dx

To solve this integral, we use method of Substitution

\red{\rm :\longmapsto\: {a}^{2}  {x}^{2} = y } \\ \red{\rm :\longmapsto\:2 {a}^{2}x = \dfrac{dy}{dx}  } \\ \red{\rm :\longmapsto\:dx =\dfrac{dy}{2 {a}^{2} x}} \\ \red{\rm :\longmapsto\:dx = \dfrac{dy}{2a \sqrt{y} } }

So, Above integral can be rewritten as

\rm :\longmapsto\:\: I \:  = \displaystyle\int _{0}^\infty \sf \:  {e}^{ -y}\dfrac{1}{2a \sqrt{y}}dy

\rm :\longmapsto\:\: I \:  =\dfrac{1}{2a}  \displaystyle\int _{0}^\infty \sf \:  {e}^{ -y}\dfrac{1}{\sqrt{y}}dy

\rm :\longmapsto\:\: I \:  =\dfrac{1}{2a}  \displaystyle\int _{0}^\infty \sf \:  {e}^{ -y} \:  {y}^{ -  \frac{1}{2} } dy

can be rewritten as

\rm :\longmapsto\:\: I \:  =\dfrac{1}{2a}  \displaystyle\int _{0}^\infty \sf \:  {e}^{ -y} \:  {y}^{\frac{1}{2}  - 1} dy

\bf\implies \:I \:  = \dfrac{1}{2a} \Gamma \: \bigg(\dfrac{1}{2} \bigg)

\bf\implies \:I \:  = \dfrac{1}{2a} \sqrt{\pi}

Hence,

\bf :\longmapsto\: \displaystyle\int _{0}^\infty \bf \:  {e}^{ -  {a}^{2} {x}^{2}}dx = \dfrac{ \sqrt{\pi} }{2a}

Additional Information :-

\green{\boxed{ \tt \Gamma \: (n + 1) = n \: \Gamma \:(n)}}

\green{\boxed{ \tt \:\Gamma \:1 = 1 }}

\green{\boxed{ \tt \:\Gamma \:(n + 1) = n! \: if \: n \in \: natural \: number }}

\green{\boxed{ \tt \:B(m, n) = \dfrac{\Gamma \:m \: \Gamma \:n}{\Gamma \:(m + n)} \: where \: m \: and \: n \:  > 0} \:}

Answered by AbhinavRocks10
13

Step-by-step explanation:

Answer

To find integral using limit of sum method :-

\displaystyle\boxed{\sf \int_{a}^{b} f( {x})dx = (b - a)}

\lim_{n \to \infty}(\frac{1}{n} )[f(a)+f(a+n) + f(a + \{n - 1\}h)]

where

\sf h = \frac{b-a}{n}

For given question :-

\rm a = 0a=0

\rm b = 2b=2

\rm f(x) = ( x^2 + 1 )f(x)=(x)

\displaystyle\sf \int_{0}^{2} ( {x}^{2} + 1)dx = 2 \lim_{n \to \infty}( \frac{1}{n} )[f(0) + f(\frac{2}{n}) + f(\frac{4}{n}) + .. + f(\frac{2 \{{n - 1} \}}{n} )]

\displaystyle\sf = 2 \lim_{n \to \infty}( \frac{1}{n} )[1 + \{ \frac{2^2}{n^2} + 1\} + \{ \frac{4^2}{n^2} + 1 \} + .. + \{ \frac{(2n-2)^2}{n^2} + 1 \}]=2

\displaystyle\sf = 2 \lim_{n \to \infty}( \frac{1}{n} )([ 1 + 1 + 1 .. 1(n - times) ] + \frac{1}{n^2} )

\displaystyle\sf = 2 \lim_{n \to \infty}( \frac{1}{n} )[ n + \frac{2^2}{n^2}(1^2 + 2^2 ..+ (n-1)^2]=2

\displaystyle\sf = 2 \lim_{n \to \infty}( \frac{1}{n} )[ n+\frac{4}{n^2}\{(n-1)n(\frac{2n-1}{6}\}]=2

\displaystyle\sf =2 \lim_{n \to \infty}( \frac{1}{n} )[n + \frac{2}{3} \{\frac{(n-1)(2n-1)}{n} \}]=2

\displaystyle\sf = 2 \lim_{n \to \infty}( \frac{1}{n} )[n+\frac{2}{3}(1-\frac{1}{n} )(2-\frac{1}{n})]=2

\sf n \to \infty , \frac{1}{n} \to 0

\displaystyle\sf \int_{0}^{2} ( {x}^{2} + 1)dx = 2 (1+ \frac{4}{3}

\displaystyle\boxed{\sf\red{ \int_{0}^{2} ( {x}^{2} + 1)dx = \frac{14}{3}}}

Similar questions