Math, asked by charansai37, 10 months ago

int(1)/((x+1)sqrt(2x^(2)+3x+1))dx​

Attachments:

Answers

Answered by senboni123456
3

Answer:

Step-by-step explanation:

We have,

\tt{\displaystyle\int\dfrac{1}{(x+1)\sqrt{2x^2+3x+1}}\,dx}

\sf{Let\,\,\,x+1=\dfrac{1}{t}}

\sf{\implies\,dx=-\dfrac{1}{t^2}\,dt}

So,

\sf{\displaystyle\int\dfrac{1}{\dfrac{1}{t}\,\sqrt{2\left(\dfrac{1}{t}-1\right)^2+3\left(\dfrac{1}{t}-1\right)+1}}\,\cdo\dfrac{-1}{t^2}\,dt}

\sf{=-\displaystyle\int\dfrac{t}{t^2\,\sqrt{2\left(\dfrac{1}{t^2}-\dfrac{2}{t}+1\right)+3\left(\dfrac{1}{t}-1\right)+1}}\,dt}

\sf{=-\displaystyle\int\dfrac{1}{t\,\sqrt{\dfrac{2}{t^2}-\dfrac{4}{t}+2+\dfrac{3}{t}-3+1}}\,dt}

\sf{=-\displaystyle\int\dfrac{1}{t\,\sqrt{\dfrac{2}{t^2}-\dfrac{1}{t}}}\,dt}

\sf{=-\displaystyle\int\dfrac{1}{t\,\sqrt{\dfrac{1}{t^2}\left(2-t\right)}}\,dt}

\sf{=-\displaystyle\int\dfrac{1}{t\cdot\dfrac{1}{t}\sqrt{2-t}}\,dt}

\sf{=-\displaystyle\int\dfrac{1}{\sqrt{2-t}}\,dt}

\sf{=2\sqrt{2-t}+C}

\sf{=2\sqrt{2-\dfrac{1}{x+1}}+C}

\sf{=2\sqrt{\dfrac{2(x+1)-1}{x+1}}+C}

\sf{=2\sqrt{\dfrac{2x+1}{x+1}}+C}

Answered by Choudharipawan123456
1

Given that :-

$$\int \frac{1}{(x+1) \sqrt{2 x^{2}+3 x+1}} d x$$

As we have to solve the given integration,

Let,

$x+1=\frac{1}{t}$

$$\Longrightarrow \mathrm{d} \mathrm{x}=-\frac{1}{\mathrm{t}^{2}} \mathrm{dt}$$

So, it is written as,

=$$\int \frac{1}{\frac{1}{t} \sqrt{2\left(\frac{1}{t}-1\right)^{2}+3\left(\frac{1}{t}-1\right)+1}} \frac{-1}{t^{2}} d t$$

$$=-\int \frac{\mathrm{t}}{\mathrm{t}^{2} \sqrt{2\left(\frac{1}{\mathrm{t}^{2}}-\frac{2}{\mathrm{t}}+1\right)+3\left(\frac{1}{\mathrm{t}}-1\right)+1}} \mathrm{dt}$$

$$=-\int \frac{1}{t \sqrt{\frac{2}{\mathrm{t}^{2}}-\frac{4}{\mathrm{t}}+2+\frac{3}{\mathrm{t}}-3+1}} \mathrm{dt}$$

By further simplifying it we get,

$$=-\int \frac{1}{\mathrm{t} \sqrt{\frac{2}{\mathrm{t}^{2}}-\frac{1}{\mathrm{t}}}} \mathrm{dt}$$

$$=-\int \frac{1}{t \sqrt{\frac{1}{t^{2}}(2-t)}} d t$$

$$=-\int \frac{1}{\sqrt{2-\mathrm{t}}} \mathrm{dt}$$

Putting t as \frac{1}{x+1} we get,

$$=2 \sqrt{2-\mathrm{t}}+\mathrm{C}$$

$$=2 \sqrt{2-\frac{1}{x+1}}+C$$

$$=2 \sqrt{\frac{2(x+1)-1}{x+1}}+C$$

$$=2 \sqrt{\frac{2 x+1}{x+1}}+C$$

Similar questions