Math, asked by sarthak9657, 8 months ago

int(1 + x2) cos 2x dx​

Answers

Answered by senboni123456
1

Step-by-step explanation:

We have,

 \int(1 +  {x}^{2} ) \cos(2x) dx \\

 =   \int \cos(2x) dx  + \int {x}^{2}  \cos(2x) dx \\

 =  \frac{ \sin(2x) }{2}  +  {x}^{2} \int \cos(2x) dx - \int( \frac{d}{dx}  {(x)}^{2} .\int \cos(2x) dx)dx \\

 =  \sin(x)  \cos(x)  +   \frac{ {x}^{2} \sin(2x)  }{2}  - \int2x. \frac{ \sin(2x) }{2} dx \\

 =  \sin(x)  \cos(x)  +    {x}^{2} \sin(x) \cos(x)     - (x\int \sin(2x) dx - \int( \frac{d}{dx}(x) .\int \sin(2x) dx)dx) \\

 = (1 +  {x}^{2} ) \sin(x)  \cos(x) - ( -  \frac{x \cos(2x) }{2}    +  \int \frac{ \cos(2x) }{2} ) \\

 = (1 +  {x}^{2} ) \sin(x) \cos(x) +  \frac{x \cos(2x) }{2}   -  \frac{ \sin(2x) }{2}  + c \\

 =   {x}^{2}\sin(x) \cos(x) +  \frac{x \cos(2x) }{2} + c \\

Similar questions