Math, asked by madhv197, 4 days ago

int_(2)^(oo)(1)/((x-1)(x^(2)+1))*dx`

Answers

Answered by saichavan
9

Answer:

 \huge \: Question

 \sf \displaystyle \pink{ \int _{2}^{ \infty } \frac{1}{(x - 1)( {x}^{2}  + 1)} \: dx}

To evaluate the improper integral , by definition , rewrite it using a limit and a definite integral.

 \displaystyle \pink{ \:  \lim_{a \to   + \infty }( \int_{2}^{a} \frac{1}{(x - 1) \times ( {x}^{2} + 1)  } dx}

 \small \pink{ \lim_{a \to \:  \infty }( \frac{1}{2}( |a - 1|  -  \frac{1}{4}  \times  ln( {a}^{2}  + 1)  +  \frac{ -  \arctan(a) +  \arctan(2)}{2} +  \frac{1}{4}  \times  ln(5)    }

Evaluate the limit.

 \displaystyle  \pink{\:  \frac{ -  \pi \:  + 2 \arctan(2)}{4}  +  \frac{1}{4} \times  ln(5)  }

Similar questions