Math, asked by Souravkv9215, 1 month ago

int (2x-sin 2x)/(1-cos 2x) dx

Answers

Answered by mathdude500
8

\large\underline{\sf{Solution-}}

Given integral is

\rm :\longmapsto\:\displaystyle\int  \frac{2x - sin2x}{1 - cos2x} \: dx

Let we assume that,

\rm :\longmapsto\:I = \displaystyle\int  \frac{2x - sin2x}{1 - cos2x} \: dx

Now, it can be rewritten as

\rm :\longmapsto\:I = \displaystyle\int  \frac{2x}{1 - cos2x} \: dx - \displaystyle\int  \frac{sin2x}{1 - cos2x} \: dx

Let suppose that,

\rm :\longmapsto\:I = I_1 - I_2 -  -  - (1)

where,

\rm :\longmapsto\:I_1 = \displaystyle\int  \frac{2x}{1 - cos2x}  \: dx

and

\rm :\longmapsto\:I_2 = \displaystyle\int  \frac{sin2x}{1 - cos2x}  \: dx

Now, Consider

\rm :\longmapsto\:I_2 = \displaystyle\int  \frac{sin2x}{1 - cos2x}  \: dx

\rm :\longmapsto\:I_2 = \displaystyle\int  \frac{2sinxcosx}{2 {sin}^{2}x }   \: dx

\rm :\longmapsto\:I_2 = \displaystyle\int   \frac{cosx}{sinx}    \: dx

\rm :\longmapsto\:I_2 = \displaystyle\int cotx\: dx

\bf\implies \:I_2 = logsinx + c_1 -  -  -  - (2)

Now, Consider

\rm :\longmapsto\:I_1 = \displaystyle\int  \frac{2x}{1 - cos2x}  \: dx

\rm :\longmapsto\:I_1 = \displaystyle\int  \frac{2x}{ {2sin}^{2} x}  \: dx

\rm :\longmapsto\:I_1 = \displaystyle\int  \frac{x}{ {sin}^{2} x}  \: dx

\rm :\longmapsto\:I_1 = \displaystyle\int  x {cosec}^{2}x \: dx

We know,

Integrating by parts,

\red{ \boxed{ \sf{ \:\displaystyle\int uvdx = u\displaystyle\int vdx - \displaystyle\int \bigg[\dfrac{d}{dx}u\displaystyle\int vdx\bigg]dx}}}

So, here

\red{\rm :\longmapsto\:u = x}

and

\red{\rm :\longmapsto\:v = cosecx}

So, on substituting the values, we get

\rm \:  =  \: x\displaystyle\int  {cosec}^{2}xdx - \displaystyle\int \bigg[\dfrac{d}{dx}x\displaystyle\int  {cosec}^{2}xdx\bigg]dx

\rm \:  =  \:  - x \: cotx \:  + \displaystyle\int cotx \: dx

\rm \:  =  \:  - x \: cotx \:  + logsinx \:  +  \: c_2

So, on substituting the values in equation (1), we get

\rm :\longmapsto\:I =  - xcotx + logsinx + c_1 - logsinx - c_2

\bf\implies \:I =  - x \: cotx \:  +  \: c

Additional Information :

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}

Similar questions