int {2x²/(x-1)(x-2)(x-3)}dx
Answers
EXPLANATION.
⇒ ∫2x².dx/(x - 1)(x - 2)(x - 3).
As we know that,
By applying the partial fraction method, we get.
Partial fraction is apply only coefficient of Denominator > coefficient of numerator.
⇒ 2x²/(x - 1)(x - 2)(x - 3) = A/(x - 1) + B/(x - 2) + C/(x - 3).
Taking L.C.M in equation, we get.
⇒ 2x² = A(x - 2)(x - 3) + B(x - 1)(x - 3) + C(x - 1)(x - 2).
Put the value of x = 2 in equation, we get.
⇒ 2(2)² = A(2 - 2)(2 - 3) + B(2 - 1)(2 - 3) + C(2 - 1)(2 - 2).
⇒ 2(4) = 0 + B(1)(-1) + 0.
⇒ 8 = -B.
⇒ B = -8.
Put the value of x = 3 in equation, we get.
⇒ 2(3)² = A(3 - 2)(3 - 3) + B(3 - 1)(3 - 3) + C(3 - 1)(3 - 2).
⇒ 2(9) = 0 + 0 + C(2)(1).
⇒ 18 = 2C.
⇒ C = 9.
Put the value of x = 1 in equation, we get.
⇒ 2(1) = A(1 - 2)(1 - 3) + B(1 - 1)(1 - 3) + C(1 - 1)(1 - 2).
⇒ 2 = A(-1)(-2) + 0 + 0.
⇒ 2 = 2A.
⇒ A = 1.
Put the value in main equation, we get.
⇒ ∫2x²dx/(x - 1)(x - 2)(x - 3) = ∫A. dx/(x - 1) + ∫B. dx/(x - 2) + ∫C. dx/(x - 3).
⇒ ∫1.dx/(x - 1) + ∫-8.dx/(x - 2) + ∫9.dx/(x - 3).
⇒ ㏑(x - 1) - 8㏑(x - 2) + 9㏑(x - 3) + c.
MORE INFORMATION.
(1) = ∫p sin(x) + q cos(x)/a sin(x) + b cos(x) dx
(2) = ∫p sin(x)/a sin(x) + b cos(x).dx
(3) = ∫q cos(x)/a sin(x) + b cos(x).dx.
For their integration, we first express Nr. as follows.
Nr = A(Dr) + B(derivative of Dr).
Then integral = Ax + B ㏒(Dr) + c.
✬ TO SOLVE.
- ❍ ∫2x².dx/(x - 1)(x - 2)(x - 3)
✬ FORMULA USED.
- ❍ Partial fraction method = Partial fraction is apply only coefficient of Denominator > coefficient of numerator.
✬ SOLUTION.
➯ 2x²/(x - 1)(x - 2)(x - 3) = A/(x - 1) + B/(x - 2) + C/(x - 3)
☯ Then, take the L.C.M ,
➯ 2x² = A(x - 2)(x - 3) + B(x - 1)(x - 3) + C(x - 1)(x - 2)
☯ Then, put the value of x = 2 ,
➯ 2(2)² = A(2 - 2)(2 - 3) + B(2 - 1)(2 - 3) + C(2 - 1)(2 - 2)
➯ 2(4) = 0 + B(1)(-1) + 0
➯ 8 = -B
➯ B = -8
☯ Then, put the value of x = 3,
➯ 2(3)² = A(3 - 2)(3 - 3) + B(3 - 1)(3 - 3) + C(3 - 1)(3 - 2)
➯ 2(9) = 0 + 0 + C(2)(1)
➯ 18 = 2C
➯ C = 9
☯ Then, put the value of x = 1,
➯ 2(1) = A(1 - 2)(1 - 3) + B(1 - 1)(1 - 3) + C(1 - 1)(1 - 2).
➯ 2 = A(-1)(-2) + 0 + 0.
➯ 2 = 2A.
➯ A = 1.
☯ Then,
➯ ∫2x²dx/(x - 1)(x - 2)(x - 3) = ∫A. dx/(x - 1) + ∫B. dx/(x - 2)+ ∫C. dx/(x - 3)
➯ ∫1.dx/(x - 1) + ∫-8.dx/(x - 2) + ∫9.dx/(x - 3)
➯ ㏑ (x - 1) - 8 ㏑ (x - 2) + 9 ㏑ (x - 3) + c