Math, asked by rishichaurasia89, 1 month ago

int dx sqrt 1-cos 4x​

Answers

Answered by senboni123456
2

Answer:

Step-by-step explanation:

We have,

\tt{\displaystyle \int\,\sqrt{1-cos(4x)}\,dx}

\sf{=\displaystyle \int\,\sqrt{2\,sin^2(2x)}\,\,dx}

\sf{=\displaystyle \int\,\sqrt{2}\cdot\,sin(2x)\,\,dx}

\sf{=\sqrt{2}\cdot\displaystyle \int\,sin(2x)\,\,dx}

\sf{=\sqrt{2} \cdot\dfrac{-cos(2x)}{2}+C}

\sf{=-\dfrac{1}{\sqrt{2}}\,\, cos(2x)+C}

Similar questions