Math, asked by neel77801, 3 months ago

int {thita sin^2(thita) cos(thita) dthita}

Answers

Answered by senboni123456
2

Step-by-step explanation:

We have,

 \int \{ \theta. \sin^{2}  \theta. { \cos }^{2}  \theta \}d \theta \\

 =  \int \{ \frac{ \theta}{4}.(4\sin^{2}  \theta{ \cos }^{2}  \theta )\}d \theta \\

 =  \frac{1}{4}  \int \theta.\sin^{2}  2\theta \: d \theta \\

Using IBP,

 =  \frac{1}{4} \sin^{2}  2\theta \int \theta \: d \theta -  \frac{1}{4}  \int \{ \frac{d}{d\theta }( \sin ^{2}2 \theta) \int \theta \: d  \theta  \} d \theta  \\

 =  \frac{1}{4} \sin^{2}  2\theta  -  \frac{1}{4}  \int \{4 \sin2 \theta \:  \cos2 \theta  \} d \theta  \\

 =  \frac{1}{4} \sin^{2}  2\theta  -  \frac{1}{2}  \int \{2 \sin2 \theta \:  \cos2 \theta  \} d \theta  \\

 =  \frac{1}{4} \sin^{2}  2\theta  -  \frac{1}{2}  \int \sin4 \theta   d \theta  \\

 =  \frac{1}{4} \sin^{2}  2\theta  -  \frac{1}{2} ( \frac{  - \cos4 \theta }{4} )\\

 =  \frac{1}{4}( \sin^{2}  2\theta   +  \frac{1}{2}   \cos4 \theta ) + c\\

Similar questions