Math, asked by rmdolic11, 2 months ago

int(x-1) √x dx
fast answer ​

Answers

Answered by Anonymous
15

Step-by-step explanation:

 \int(x - 1) \sqrt{x} \: dx

 \int(x - 1) {x}^{ \frac{1}{2} }  \: dx

 \int ({x})^{1 +  \frac{1}{2} }  -  {x}^{ \frac{1}{2} }  \: dx \:  \: ( \because \:  {x}^{m}  \times  {x}^{n}  =  {x}^{m + n} )

 \int(x) ^{ \frac{2 + 1}{2} }  -  {x}^{ \frac{1}{2} }  \: dx

 \int(x)^{ \frac{3}{2} }  -  {x}^{ \frac{1}{2} }  \: dx

 \int {x}^{ \frac{3}{2} }  \: dx-   \int{x}^{ \frac{1}{2} }  \: dx

 \frac{ {x}^{ \frac{3}{2} + 1 } }{ \frac{3}{2} }  -  \frac{ {x}^{ \frac{1}{2}  + 1} }{ \frac{1}{2} }

  \frac{ {x}^{ \frac{3 + 2}{2} } }{ \frac{3 + 2}{2} }  -  \frac{ {x}^{ \frac{1 + 2}{2} } }{ \frac{1 + 2}{2} }

 \frac{ {x}^{ \frac{5}{2} } }{ \frac{5}{2} }  -  \frac{ {x}^{ \frac{3}{2} } }{ \frac{3}{2} }

 \frac{ {2x}^{ \frac{5}{2} } }{5}  -  \frac{ {2x}^{ \frac{3}{2} } }{3}

I hope it is helpful

Answered by Arshu13895
3

Answer:

Thanks priyanshu

for giving me thanks ❤❤❤

Similar questions