Math, asked by corrieanicole69, 4 months ago

Int(x^3)/(x^2+x+1) dx

Answers

Answered by Anonymous
10

Explanation,

ㅤㅤㅤㅤㅤ

\tt  \green\bigstar \:  \int  \bigg(\dfrac{x {}^{3} }{x {}^{2}  + x + 1} \bigg)dx \\  \\  \\  : \implies  \int  \tt\bigg(x - 1  +  \dfrac{1}{ x {}^{2} + x + 1 }  \bigg)dx \\  \\  \\  : \implies  \int  \tt x \: dx -  \int 1  \: dx +  \int \bigg(  \frac{1}{x {}^{2} + x + 1 } \bigg)dx \\  \\  \\  : \implies    \tt \:  \dfrac{x {}^{2} }{2}  -  \int 1  \: dx +  \int \bigg(  \frac{1}{x {}^{2} + x + 1 } \bigg)dx \\  \\  \\ : \implies    \tt \:  \dfrac{x {}^{2} }{2}  -  x+  \int \bigg(  \frac{1}{x {}^{2} + x + 1 } \bigg)dx \\  \\  \\  : \implies    \tt \:  \dfrac{x {}^{2} }{2}  -  x +  \dfrac{2 \sqrt{3} \: arctan \:  \bigg( \dfrac{2 \sqrt{3}x +  \sqrt{3}  }{3}  \bigg) }{3}  \\  \\  \\ : \implies    \boxed{ \tt\dfrac{x {}^{2} }{2}  -  x +  \dfrac{2 \sqrt{3} \: arctan \:  \bigg( \dfrac{2 \sqrt{3}x +  \sqrt{3}  }{3}  \bigg) }{3}  + c} \red \bigstar

ㅤㅤㅤㅤㅤ

Know to more,

ㅤㅤㅤㅤㅤ

  • Power rule.

ㅤㅤㅤㅤㅤ

\bigstar\tt \int x {}^{n} .dx \:  \rightarrow \:  \dfrac{x {}^{n + 1} }{n + 1}  + c

ㅤㅤㅤㅤㅤ

  • Multiplication by constant (c).

ㅤㅤㅤㅤㅤ

 \bigstar\tt \int c \: f(x).dx \:  \rightarrow \: c \int f(x).dx

ㅤㅤㅤㅤㅤ

  • Sum rule.

ㅤㅤㅤㅤㅤ

 \bigstar\tt \int (f + g)dx  \rightarrow \: \int fdx \:  +  \:  \int gdx

ㅤㅤㅤㅤㅤ

  • Difference rule.

ㅤㅤㅤㅤㅤ

\bigstar\tt \int (f - g)dx  \rightarrow \: \int fdx \:  - \:  \int gdx

ㅤㅤㅤㅤㅤ

Similar questions