Math, asked by wwwmadelinechetri, 11 months ago

int x² √1 + x³ dx find it ​

Answers

Answered by Anonymous
16

Answer:

 \large \bold\red{\frac{2}{9}  {(1 +  {x}^{3} )}^{  \frac{3}{2}  }  + c}

Step-by-step explanation:

We have to simplify,

\displaystyle\int {x}^{2}  \sqrt{1 +  {x}^{3} }  \: dx

Let's assume that,

1 +  {x}^{3}  = t

Differentiating both the sides,

We get,

 =  > 3 {x}^{2} dx = dt \\  \\  =  >  {x}^{2} dx =  \frac{dt}{3}

Now,

Substituting the values,

We get,

  = \frac{1}{3} \displaystyle\int \sqrt{t}  \: dt \\  \\  =   \frac{1}{3} \displaystyle\int {t}^{ \frac{1}{2} } dt

But,

We know that,

  • \displaystyle\int {x}^{n}  =  \frac{ {x}^{n + 1} }{n + 1}

Therefore,

We get,

 =  \frac{1}{3} \times   \frac{ {t}^{ \frac{3}{2} } }{ \frac{3}{2} }  + c \\  \\  =  \frac{1}{3}  \times  \frac{2}{3}  {t}^{ \frac{3}{2} }  + c \\  \\  =  \frac{2}{9}  {t}^{ \frac{3}{2} }  + c

Substituting the value of t,

We get,

 =   \large \bold{\frac{2}{9}  {(1 +  {x}^{3} )}^{  \frac{3}{2}  }  + c}

Where,c is any Constant.

Answered by NITESH761
0

Step-by-step explanation:

We have,

\displaystyle \sf \int x² \sqrt{1 + x³} dx

Let  \sf t= 1+ x^3

differentiating both sides w.r.t x,

 \sf \: \dfrac{dt}{dx} = 3x^2

\sf dx = \dfrac{dt}{3x^2}

\displaystyle \sf \int x² \sqrt{1 + x³} dx

Multiply and divide by 3,

\displaystyle \sf \int \dfrac{3x² \sqrt{1 + x³} }{3}dx

\displaystyle \sf \dfrac{1}{3}\int 3x² \sqrt{1 + x^3} dx

Put the value of dx,

\displaystyle \sf \dfrac{1}{3}\int 3x² \sqrt{1 + x^3} \dfrac{dt}{3x^2}

\displaystyle \sf \dfrac{1}{3}\int \cancel{ 3x²} \sqrt{1 + x^3} \dfrac{dt}{\cancel{3x^2}}

Put the value of 1+x³ as t

\displaystyle \sf \dfrac{1}{3}\int \sqrt{t} dt

\sf \dfrac{1}{3} × \dfrac{2}{3} t ^{\frac{3}{2}}

\sf \dfrac{2}{9} t^{\frac{3}{2}}

Put the value t as 1 +x³

\sf \dfrac{2}{9} (1+x^3)^{\frac{3}{2}}

Add arbitrary constant (C),

\sf \dfrac{2}{9} (1+x^3)^{\frac{3}{2}} +C

Similar questions