Math, asked by bhushanbodalkar18, 2 months ago

inte
integration  of  x  squar by  x square  plus one

Answers

Answered by amansharma264
2

EXPLANATION.

\sf \implies \displaystyle \int \dfrac{x^{2} }{x^{2}  + 1} dx

As we know that,

Adding and subtracting 1 in numerator, we get.

\sf \implies \displaystyle \int \dfrac{x^{2}  + 1 - 1}{x^{2}  + 1} dx

\sf \implies \displaystyle \int \dfrac{x^{2}  + 1}{x^{2}  + 1} dx \ - \int \dfrac{1}{x^{2}  + 1} dx

\sf \implies \displaystyle \int 1.dx \ - \int \dfrac{1}{x^{2}  + 1} dx

\sf \implies \displaystyle x - \int \frac{1}{x^{2}  + 1} dx

Substitute the value of x = tan(t) in equation, we get.

\sf \implies \displaystyle x - \int \dfrac{1.dx}{tan^{2}t + 1 }

Differentiate the equation w.r.t x, we get.

⇒ x = tan(t).

⇒ dx = sec²tdt.

Substitute the value in the equation, we get.

\sf \implies \displaystyle x - \int \dfrac{sec^{2}t .dt }{tan^{2}t + 1 }

As we know that,

Formula of :

⇒ 1 + tan²x = sec²x.

Using this formula in equation, we get.

\sf \implies \displaystyle x - \int \dfrac{sec^{2}t.dt }{sec^{2} t}

\sf \implies \displaystyle x - \int dt

\sf \implies \displaystyle x - t + C

⇒ x = tan(t).

⇒ t = tan⁻¹(x).

Put the value of x = tan⁻¹x in equation, we get.

\sf \implies \displaystyle x - tan^{-1} x + C.

\sf \implies \displaystyle \int \dfrac{x^{2} }{x^{2}  + 1} dx = x - tan^{-1} x + C.

                                                                                                                   

MORE INFORMATION.

Standard integrals.

(1) = ∫0.dx = c.

(2) = ∫1.dx = x + c.

(3) = ∫k dx = kx + c, (k ∈ R).

(4) = ∫xⁿdx = xⁿ⁺¹/n + 1 + c, (n ≠ - 1).

(5) = ∫dx/x = ㏒(x) + c.

(6) = ∫eˣdx = eˣ + c.

(7) = ∫aˣdx = aˣ/㏒(a) + c = aˣ㏒(e) + c.

Similar questions