Math, asked by polarflow2015, 9 months ago

integarte dx/2sin^2x+5cos^2x​

Answers

Answered by MaheswariS
9

\underline{\textbf{Given:}}

\displaystyle\mathsf{\int\;\dfrac{1}{2\,sin^2x+5\,cos^2x}dx}

\underline{\textbf{To find:}}

\displaystyle\mathsf{\int\;\dfrac{1}{2\,sin^2x+5\,cos^2x}dx}

\underline{\textbf{Solution:}}

\underline{\textbf{Formula used:}}

\boxed{\displaystyle\mathsf{\int\;\dfrac{1}{x^2+a^2}dx=tan^{-1}\left(\dfrac{x}{a}\right)+C}}

\mathsf{Consider,}

\displaystyle\mathsf{\int\;\dfrac{1}{2\,sin^2x+5\,cos^2x}dx}

\textsf{This can be written as}

\displaystyle\mathsf{=\int\;\dfrac{1}{cos^2x\left(2\,\dfrac{sin^2x}{cos^2x}+5\right)}dx}

\displaystyle\mathsf{=\int\;\dfrac{sec^2x}{2\,tan^2x+5}dx}

\textsf{We apply the following substituition}

\boxed{\mathsf{Take\;t=tanx\;\implies\;\dfrac{dt}{dx}=sec^2x\;\implies\;dt=sec^2x\,dx}}

\displaystyle\mathsf{=\int\;\dfrac{1}{2\,t^2+5}dt}

\displaystyle\mathsf{=\dfrac{1}{2}\int\;\dfrac{1}{t^2+\dfrac{5}{2}}dt}

\displaystyle\mathsf{=\dfrac{1}{2}\int\;\dfrac{1}{t^2+\left(\dfrac{\sqrt{5}}{\sqrt{2}}\right)^2}dt}

\mathsf{=\dfrac{1}{2}{\times}\dfrac{1}{\dfrac{\sqrt{5}}{\sqrt{2}}}\,tan^{-1}\left(\dfrac{t}{\dfrac{\sqrt{5}}{\sqrt{2}}}\right)+C}

\mathsf{=\dfrac{1}{\sqrt{2}}{\times}\dfrac{1}{\sqrt{5}}\,tan^{-1}\left(\dfrac{\sqrt{2}t}{\sqrt{5}}\right)+C}

\mathsf{=\dfrac{1}{\sqrt{10}}\,tan^{-1}\left(\dfrac{\sqrt{2}tanx}{\sqrt{5}}\right)+C}

\underline{\textbf{Find more:}}

Integral cotx/cosecx-cotx

https://brainly.in/question/3012110#

Similar questions