Math, asked by Rayanna5601, 1 year ago

Integer programming problem with m clauses prove np complete

Answers

Answered by Rajeshkumare
0
title{NP-completeness of 0-1 Integer Programming}

\author{Kurt McAlpine, 2004750}


\begin{document}


\frame{\titlepage}


\begin{frame}

\frametitle{Description}


Integer programming is defined as the following optimisation problem:


\begin{align}

max \{ c^\top x : Ax \leq b, x \in \mathbb{Z}^n\}

\end{align}


Where $A$ is an $m \times n$ integer matrix for $m,n \in \mathbb{N}$, $b \in

\mathbb{Z}^m$, $c \in \mathbb{Z}^n$\\


0-1 integer programming is a special case of integer programming where $x \in

\{0,1\}^n$


\end{frame}


\begin{frame}

\frametitle{Description}


Reformulating the integer programming optimisation problem into a decision

problem so that I can give a proof of NP-completeness.\\


``Given $A$ and $b$ does there exist an $x$ such that the following condition

is satisfied $Ax \geq b$''


\end{frame}


\begin{frame}

\frametitle{0-1 Integer Programming is in NP}


To show 0-1 integer programming is in NP we describe a Turing machine M that

can verify an instance in polynomial time.\\


$M = $``On input $(A, b, x)$\\

1. multiply matrix $A$ with vector $x$\\

2. for $i \in (1,\ldots,m)$\\

3. ~ if $(Ax)_i > b_i$ reject\\

4. accept

Similar questions