Math, asked by rahulkumaroraon5, 1 year ago

integerat x^4+x^2+1/2(x^2+1)​

Answers

Answered by jitekumar4201
0

Answer:

I = \dfrac{x^{5} }{5} + \dfrac{x}{2} + C

Step-by-step explanation:

Given-

I = \int\ {x^{4}+\dfrac{(x^{2}+1) }{2(x^{2}+1) }  } \, dx

I = \int\ {x^{4}+\dfrac{1}{2} } \, dx

= \int\ {x^{4} } \, dx + \int\ {\dfrac{1}{2} } \, dx

= \int\ {x^{4} } \, dx + \dfrac{1}{2}\int {1} \, dx

We know that-

\int\ {x^{n} } \, dx = \dfrac{x^{n+1} }{n+1}

= \dfrac{x^{5} }{5} + \dfrac{1}{2}(x) + C

I = \dfrac{x^{5} }{5} + \dfrac{x}{2} + C

Where C is an integral constant.

Similar questions