Math, asked by mohit06980, 1 year ago

integeration of 1/x√x^4-1

Attachments:

Answers

Answered by Pitymys
3

To find the indefinite integral  \int \frac{1}{x\sqrt{x^4-1}}\, dx    .

Substitute  x^4=t then  4x^3dx=dt

  \int \frac{1}{x\sqrt{x^4-1}}\, dx = \int \frac{4x^3}{4x^4\sqrt{x^4-1}}\, dx \\<br /> \int \frac{1}{x\sqrt{x^4-1}}\, dx = \int \frac{1}{4t\sqrt{t-1}}\, dt

Now make the substitution  t=\sec^2(\theta),dt=2\sec^2(\theta)\tan(\theta)

The integral becomes,

  \int \frac{1}{x\sqrt{x^4-1}}\, dx = \int \frac{2\sec^2(\theta)\tan(\theta)}{4\sec^2(\theta)\tan(\theta)}\, d \theta\\<br /> \int \frac{1}{x\sqrt{x^4-1}}\, dx = \int \frac{1}{2}\, d\theta\\<br /> \int \frac{1}{x\sqrt{x^4-1}}\, dx = \frac{\theta}{2}+C\\<br /> \int \frac{1}{x\sqrt{x^4-1}}\, dx = \frac{1}{2}\sec^{-1}(x^2)+C

Similar questions