Math, asked by Aashi567, 10 months ago

Integers p,q,r satisfy p+q-r=-1 and p^2+q^2-r^2=-1 What is the sum of all positive values of p+q+r.

Answers

Answered by amitnrw
4

Given : Integers p,q,r satisfy p+q-r=-1 and p^2+q^2-r^2=-1

To find  : sum of all positive values of p+q+r

Solution:

p+q-r=-1  

=> p + q  =  r -  1

Squaring both sides

=> p² + q² + 2pq  = r² + 1 - 2r

p²+q²-r²=-1

=> p²+q² = r² -1

Substituting this value

=> r² -1 + 2pq  = r² + 1 - 2r

=>  2pq  = 2 - 2r

=> pq = 1  - r

=> pq = - (r - 1)

=> pq  = - (p + q)

=> p + q + pq =  0

=> p =   -q/(q + 1)     &  q =  -p/(p + 1)

p , q & r  are integer    so  q + 1  or p + 1  = ± 1

only possible Values

p = q = 0  or p = q  = -2

=>pq = 0     or pq  = 4

pq = 1  - r   =>  r = 1 -  pq

p = q = 0     => r  = 1 - 0 = 1

=> p + q + r  = 1

p = q  = -2  => r = 1 - 4  = - 3

p + q + r   = -2 - 3 = - 5   ( negative Value)

positive values of p+q+r.   =  1   only

sum of all positive values of p+q+r.  =  1

Learn more:

If the ordered triplets of real numbers (x, y, z) satisfy √x-y+z=√x ...

https://brainly.in/question/18708970

if x+y+z=0 then the square of the value of (x+y)^2/xy+(y+z)^2/yz+(z+x)

https://brainly.in/question/12858114

Similar questions