integrade x3.dx/(x+2)(x^2+3)
Answers
Answer:
Use a substitution:
u=1+x2
du=2xdx
∫x3(1+x2)3dx=12∫x2(1+x2)3⋅2xdx=12∫(u−1)u3du=12∫(u−2−u−3)du=12(u−1−1−u−2−2)+C=14(−2u−1+u−2)+C=1−2u4u2+C=1−2(1+x2)4(1+x2)2+C=−1+2x24(1+x2)2+C
Using trig substitution:
x=tanu
dx=sec2u
∫x3(1+x2)3dx=∫tan3u(1+tan2u)3⋅sec2udu=∫tan3u⋅sec2u(sec2u)3du=∫tan3usec4udu=∫sin3ucosudu=14sin4u+C=tan4u4sec4u+C=x44(1+x2)2+C
NOTE:
Even though the results above seem different, they actually differ by just a constant:
(x44(1+x2)2)−(−1+2x24(1+x2)2)
=x4+2x2+14(1+x2)2
=(x2+1)24(1+x2)2
=14
Integration by parts:
u=x2du=2xdxdv=x(1+x2)3dxv=−14(1+x2)2
∫x3(1+x2)3dx=−x24(1+x2)2+∫x2(1+x2)2dx=(14(1+x2)2−1−x24(1+x2)2)−14(1+x2)+C=14(1+x2)2−12(1+x2)+C
This result is exactly the same as first one.
Step-by-step explanation: