Math, asked by sathvika59, 1 year ago

integral 0 to 10 π modulus of sin x dx

Answers

Answered by vikas3953
4
...............................
Attachments:
Answered by harendrachoubay
6

\int\limits^{(10\pi)}_b {[\sin x]} \, dx=20

Step-by-step explanation:

We have,

\int\limits^{(10\pi)}_b {[\sin x]} \, dx

To find, \int\limits^{(10\pi)}_b {[\sin x]} \, dx=?

We know that,

\sin(x+\pi)=-sin(x)

In any periodic function with period T,

\int\limits^{(a+kT)}_a {f(x)} \, dx =k\int\limits^{(a+T)}_a {f(x)} \, dx

\int\limits^{(10\pi)}_b {[\sin x]} \, dx=10\int\limits^{(\pi)}_b {[\sin x]} \, dx

=10[-\cos x]_{0}^{\pi}

=10[\cos 0-\cos \pi]

=10[1-(-1)]

=10[1+1]

=  20

Hence, \int\limits^{(10\pi)}_b {[\sin x]} \, dx=20.

Similar questions