Math, asked by nissanbharath97, 1 month ago

integral 0 to 2 dx/ x^2 + 5x + 6

Answers

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

\rm :\longmapsto\:\displaystyle\int_0^2\sf \: \dfrac{dx}{ {x}^{2}  + 5x + 6}

\rm  \:  =  \: \:\:\displaystyle\int_0^2\sf \: \dfrac{1}{ {x}^{2}  + 5x + 6} \: dx

\rm  \:  =  \: \:\:\displaystyle\int_0^2\sf \: \dfrac{1}{ {x}^{2}  + 3x + 2x + 6} \: dx

\rm  \:  =  \: \:\:\displaystyle\int_0^2\sf \: \dfrac{1}{ x(x + 3)  +2(x + 3)} \: dx

\rm  \:  =  \: \:\:\displaystyle\int_0^2\sf \: \dfrac{1}{ (x + 3)(x + 2)} \: dx

\rm  \:  =  \: \:\:\displaystyle\int_0^2\sf \: \dfrac{3 - 2}{ (x + 3)(x + 2)} \: dx

\rm  \:  =  \: \:\:\displaystyle\int_0^2\sf \: \dfrac{x + 3 - x - 2}{ (x + 3)(x + 2)} \: dx

\rm  \:  =  \: \:\:\displaystyle\int_0^2\sf \: \dfrac{(x + 3) - (x  + 2)}{ (x + 3)(x + 2)} \: dx

\rm  \:  =  \: \:\:\displaystyle\int_0^2\sf \: \dfrac{1}{ x + 2} \: dx - \displaystyle\int_0^2\sf \: \dfrac{1}{ x + 3} \: dx

\rm  \:  =  \: \:\bigg( log(x + 2)  \bigg)_0^2 - \bigg( log(x + 3)  \bigg)_0^2

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \because \:  \boxed{\displaystyle\int\sf \: \dfrac{dx}{x}  =  log(x)  + c}

\rm  \:  =  \: \: log(4) -  log(2) -  log(5) +  log(3)

\rm  \:  =  \: \:log\bigg(\dfrac{4 \times 3}{5 \times 2} \bigg)

\rm  \:  =  \: \:log\bigg(\dfrac{6}{5} \bigg)

Additional Information :-

 \boxed{\displaystyle\int\sf \: \dfrac{dx}{ {x}^{2}  +  {a}^{2} }  = \dfrac{1}{a} {tan}^{ - 1}  \dfrac{x}{a}  + c}

 \boxed{\displaystyle\int\sf \: \dfrac{dx}{ {x}^{2} - {a}^{2} }  = \dfrac{1}{2a}  \: {log} \: \dfrac{x - a}{x + a}  + c}

 \boxed{\displaystyle\int\sf \: \dfrac{dx}{ \sqrt{ {x}^{2} -  {a}^{2}}}  =  log |x +  \sqrt{ {x}^{2}  -  {a}^{2} } |   + c}

 \boxed{\displaystyle\int\sf \: \dfrac{dx}{ \sqrt{ {x}^{2} + {a}^{2}}}  =  log |x +  \sqrt{ {x}^{2} +  {a}^{2} } |   + c}

 \boxed{\displaystyle\int\sf \: \dfrac{dx}{ \sqrt{ {a}^{2}  -  {x}^{2} } }  =  {sin}^{ - 1}  \: \dfrac{x}{a}  + c}

Similar questions