Math, asked by anjaliajith3335, 5 months ago

integral 0 to pi bi 2 sin raise to 4 ​

Answers

Answered by shadowsabers03
3

We have, if n\in\mathbb{N},

\displaystyle\small\text{$\longrightarrow\int\limits_0^{\frac{\pi}{2}}\sin^nx\ dx=\int\limits_0^{\frac{\pi}{2}}\cos^nx\ dx=\left\{\begin{array}{ll}\dfrac{(n-1)(n-3)(n-5)\dots2}{n(n-2)(n-4)\dots3},&n\ is\ odd\\\\\dfrac{(n-1)(n-3)(n-5)\dots3}{n(n-2)(n-4)\dots2}\cdot\dfrac{\pi}{2},&n\ is\ even\end{array}\right.$}

Here, we've to evaluate,

\displaystyle\longrightarrow I=\int\limits_0^{\frac{\pi}{2}}\sin^4x\ dx

Here n=4 is even. Hence,

\longrightarrow I=\dfrac{(n-1)(n-3)(n-5)\dots3}{n(n-2)(n-4)\dots2}\cdot\dfrac{\pi}{2}

\longrightarrow I=\dfrac{3}{4\cdot2}\cdot\dfrac{\pi}{2}

\longrightarrow\underline{\underline{I=\dfrac{3\pi}{16}}}

Hence 3π/16 is the answer.

Similar questions