Math, asked by amitsirjee9973, 2 months ago

integral 0 to pie sin^4theta d theta

Answers

Answered by amansharma264
6

EXPLANATION.

\sf \implies \int\limits^\pi_0 {sin^{4} x} \, dx

As we know that,

First we integrate the value of sin⁴ x dx, we get.

\sf \implies \int\limits^\pi_0 sin^{2}x sin^{2}x.dx

As we know that,

Formula of :

sin²x = (1 - cos(2x)/2)².dx

\sf \implies \int\limits^\pi_0\bigg(\dfrac{1 - cos(2x)}{2} \bigg)^{2} .dx

\sf \implies \int\limits^\pi_0 \dfrac{1}{4} \bigg(1 - cos(2x) \bigg)^{2}.dx

\sf \implies \dfrac{1}{4} \int\limits^\pi_0 (1 + cos(2x)^{2} - 2cos(2x).dx

As we know that,

Formula of :

⇒ cos(2∅) = 2cos²∅ - 1.

⇒ cos2∅ + 1 = 2cos²∅.

Put the value of ∅ = 2x in equation, we get.

⇒ cos2(2x) + 1 = 2cos²(2x).

⇒ cos4x + 1 = 2cos²2x.

⇒ cos4x + 1/2 = cos²2x.

Put the value of cos²2x = cos4x + 1/2, we get.

\sf \implies \dfrac{1}{4} \int\limits^\pi_0 \bigg(1 + \dfrac{cos4x + 1}{2} - 2cos2x \bigg).dx

\sf \implies \dfrac{1}{4} \int\limits^\pi_0(1.dx) +  \dfrac{1}{8} \int\limits^\pi_0 (cos4x + 1).dx - \dfrac{2}{4} \int\limits^\pi_0cos(2x).dx

\sf \implies \dfrac{1}{4} \int\limits^\pi_0(1.dx) +  \dfrac{1}{8} \int\limits^\pi_0 cos(4x).dx + \dfrac{1}{8} \int\limits^\pi_0(1.dx) -  \dfrac{1}{2} \int\limits^\pi_0 cos(2x).dx

\sf \implies \bigg[\dfrac{x}{4} + \dfrac{x}{8}  + \dfrac{sin(4x)}{32} - \dfrac{sin(2x)}{4}  \bigg]_0^\pi

\sf \implies \bigg[\dfrac{3x}{8}  + \dfrac{sin(4x)}{32} - \dfrac{sin(2x)}{4}  \bigg]_0^\pi

As we know that,

First we put the upper limit then we put the lower limits in the equation, we get.

\sf \implies \bigg[\dfrac{3\pi}{8} + \dfrac{sin(4\pi)}{32} - \dfrac{sin(2\pi)}{4} \bigg] - \bigg[\dfrac{3(0)}{8} + \dfrac{sin(4(0))}{32} - \dfrac{sin(2(0))}{4} \bigg]

As we know that,

⇒ sin2π = 0.

⇒ sin2(2π) = 0.

\sf \implies  \int\limits^\pi_0sin^{4}x.dx = \dfrac{3\pi}{8}

                                                                                                                                     

MORE INFORMATION.

Definition of [NEWTON-LEIBNITZ FORM].

Let ''f'' if function of x defined on [a, b] and d[f(x)]/dx = Ф(x) and a and b are two values independent of variable x, then for all values of x in domain of ''f'' then,

\sf \implies \int\limits^b_a {\phi(x)} \, dx = [f(x)]_a^b = f(b) - f(a).

Answered by mathdude500
1

IDENTITIES USED :-

 \longmapsto \boxed{ \green{ \bf \: \:  \int\limits _0  ^{ a } f(x) \: dx =  \:  \int\limits _0  ^{ a }f(a - x)dx  }}

 \boxed{ \green{ \bf \: \:  \int\limits _0  ^{ 2a } f(x) \: dx =  2\:  \int\limits _0  ^{ a }f(x)dx \: when \: f(2a - x) = f(x)}}

CALCULATION

\tt \implies  \: Let  \: I \:  =  \:  \int\limits^\pi_0 {sin^{4} x} \, dx -  -  - (1)

 \longmapsto \rm \: Let  \: f(x) =  {sin}^{4} x

So,

 \longmapsto \rm \: f(\pi \:  - x) =  {sin}^{4} (\pi \:  - x)

 \longmapsto \rm \: f(\pi \:  - x) =  {sin}^{4} x

\rm :\implies\:f(\pi \:  - x) = f(x)

So,

 \tt\: I \:  =  \: 2 \int\limits _0  ^{ \frac{\pi}{2} } {sin^{4} x} \, dx -  - (2)

Now,

 \longmapsto \boxed{ \green{ \bf \:change \: x \:  \to \: \dfrac{\pi}{2}   - x}}

\tt\: I \:  =  \: 2 \int\limits _0  ^{ \frac{\pi}{2} } {sin^{4}  \bigg(\dfrac{\pi}{2}  - x \bigg)} \, dx

\tt\: I \:  =  \: 2 \int\limits _0  ^{ \frac{\pi}{2} } {cos^{4} x} \, dx -  -  - (3)

Now,

Adding equation (2) and equation (3), we get

\rm :\implies\:\tt\: 2I \:  =  \: 2 \int\limits _0  ^{ \frac{\pi}{2} } ({sin^{4} x}  + {cos^{4} x})\, dx

\rm :\implies\:\tt\: I \:  =  \:  \int\limits _0  ^{ \frac{\pi}{2} }( ({sin^{2} x})^{2}   + ({cos^{2} x}) ^{2}) \, dx

\rm :\implies\:\tt\: I \:  =  \:  \int\limits _0  ^{ \frac{\pi}{2} }  {(( {sin}^{2}x +  {cos}^{2}x)  }^{2}  - 2 {sin}^{2} x {cos}^{2} x) \: dx

\rm :\implies\:I  =  \:  \int\limits _0  ^{ \frac{\pi}{2} } (1 - 2 {sin}^{2} x {cos}^{2} x)d

\rm :\implies\: I  =  \:  \int\limits _0  ^{ \frac{\pi}{2} } 1dx - \dfrac{1}{2}  \:  \int\limits _0  ^{ \frac{\pi}{2} } 4 {sin}^{2} x {cos}^{2} x \: dx

\rm :\implies\:I  =  \:(x) _0  ^{ \frac{\pi}{2} }  - \dfrac{1}{2}  \:  \int\limits _0  ^{ \frac{\pi}{2} }  {sin}^{2} 2x \: dx

\rm :\implies\:I  = \dfrac{\pi}{2}  - \dfrac{1}{2}  \:  \int\limits _0  ^{ \frac{\pi}{2} } \dfrac{1 - cos4x}{2} dx

\rm :\implies\:I  = \dfrac{\pi}{2}  - \dfrac{1}{4}  \:  \int\limits _0  ^{ \frac{\pi}{2} }(1 - cos4x)dx

\rm :\implies\:I  = \dfrac{\pi}{2}  - \dfrac{1}{4}  \:   \bigg(x - \dfrac{sin4x}{4}  \bigg) _0  ^{ \frac{\pi}{2} }

\rm :\implies\:I  = \dfrac{\pi}{2}  - \dfrac{1}{4}  (\dfrac{\pi}{2} )

\rm :\implies\:I  = \dfrac{\pi}{2}  -   (\dfrac{\pi}{8} )

\rm :\implies\:I  = \dfrac{4\pi \:  - 3\pi}{8}

\rm :\implies\:I  = \dfrac{3\pi}{8}

Similar questions