Math, asked by snehapeter9007, 5 months ago

integral 0 to π (x sin x/1+sinx)dX

Answers

Answered by senboni123456
0

Step-by-step explanation:

We have,

 i = \int_{0}^{\pi} \frac{x \sin(x) }{1 +  \sin(x) } dx \\ ........(i)

  \implies \: i =  \int_{0}^{\pi} \frac{(\pi - x) \sin(\pi - x) }{1 +  \sin(\pi - x) } dx \\

 \implies \: i = \int_{0}^{\pi} \frac{(\pi - x) \sin(x) }{1 +  \sin(x) } dx \\ ....(ii)

Adding (i) and (ii),

 \implies \: 2i =  \int_{0}^{\pi} \frac{\pi \sin(x) }{1 +  \sin(x) } dx \\

 \implies \: 2i = \pi \int_{0}^{\pi} \frac{1 +  \sin(x) - 1 }{1 +  \sin(x) } dx \\

 \implies \frac{2}{\pi}  i =  \int_{0}^{\pi}dx -  \int_{0}^{\pi} \frac{dx}{1 +  \sin(x) }  \\

 \implies \frac{2}{\pi}  i = \pi -  \int_{0}^{\pi} \frac{ \sec^{2} ( \frac{x}{2} ) }{(1 +  \tan( \frac{x}{2} ))^{2}  } dx \\

\implies \frac{2}{\pi}  i = \pi -2 \int _{0}^{\pi}  \frac{ \frac{1}{2} \sec^{2} ( \frac{x}{2} ) dx }{(1 +  \tan( \frac{x}{2} ))^{2}  }  \\

\implies \frac{2}{\pi}  i = \pi -2 \int _{1}^{ \infty }  \frac{dt}{ {t}^{2} }  \\

\implies \frac{2}{\pi}  i = \pi  + 2  [ \frac{1}{t} ] _{1}^{ \infty }  \\

\implies \frac{2}{\pi}  i = \pi -2(1 -  \frac{1}{ \infty }  )  \\

\implies \frac{2}{\pi}  i = \pi -2

\implies   i =  \frac{ (\pi -2)\pi  }{ 2 }

  \implies \: i =  \frac{ {\pi}^{2} }{2}   - \pi

Similar questions