Math, asked by podilapusowjanya653, 8 hours ago

integral 1+cos squarex/1-cos2x dxxnotequaltonpie,nbelongs to z​

Answers

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

Given integral is

\rm :\longmapsto\:\displaystyle\int\rm  \frac{1 +  {cos}^{2}x}{1 - cos2x} \: dx

We know,

 \purple{\rm :\longmapsto\:\boxed{\tt{ 1 - cos2x =  {2sin}^{2}x}}}

So, using this identity, we get

\rm \:  =  \: \displaystyle\int\rm  \frac{1 +  {cos}^{2}x }{ {2sin}^{2}x} \: dx

\rm \:  =  \: \dfrac{1}{2} \displaystyle\int\rm \bigg[\dfrac{1}{ {sin}^{2} x}  + \dfrac{ {cos}^{2}x}{ {sin}^{2}x}\bigg] \: dx

\rm \:  =  \: \dfrac{1}{2} \displaystyle\int\rm \bigg[ {cosec}^{2}x +  {cot}^{2}x\bigg] \: dx

We know,

 \purple{\rm :\longmapsto\:\boxed{\tt{  {cosec}^{2}x -  {cot}^{2}x = 1}}}

So, using this, we get

\rm \:  =  \: \dfrac{1}{2} \displaystyle\int\rm \bigg[ {cosec}^{2}x +  {cosec}^{2}x - 1\bigg] \: dx

\rm \:  =  \: \dfrac{1}{2} \displaystyle\int\rm \bigg[ 2{cosec}^{2}x  - 1\bigg] \: dx

\rm \:  =  \: \dfrac{1}{2}[ - 2cotx - x] + c

\rm \:  =  \:  -  \: cotx \:  -  \: \dfrac{x}{2} \:  +  \: c

Hence,

 \red{\boxed{\tt{ \rm \: \displaystyle\int\rm  \frac{1 +  {cos}^{2} x}{1 - cos2x}dx  =  \:  -  \: cotx \:  -  \: \dfrac{x}{2} \:  +  \: c}}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

MORE TO KNOW

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}

Similar questions