integral(1-cosx) cosec^2x
Answers
Answered by
2
Answer:
sin²x/sin²x/2. cos²x/2 + c
Step-by-step explanation:
i (1 - cosx)cosec²x
i (cosec²x - cosx. cosec²x)
i cosec²x.dx - i cosx/sin²x
- cotx - i dt/t² [let sinx = t, and cosx.dx= dt]
- cotx - 1/t + c
- cotx - 1/sinx + c
- cotx + cosecx + c
-cosx/sinx + 1/sinx + c
(1 - cosx)/sinx + c
(1 - 1 + 2sin²x)/sinx + c
2sin²x/sinx + c
2sin²x/(2. sin²x/2. cos²x/2) + c
sin²x/sin²x/2. cos²x/2 + c
Answered by
49
Answer
- csc x - cot x + c
Given
To Find
Solution
Let , u = sin x
⇒ du = cos x dx
Sub. this in (1) , we get ,
More Info
- d/dx ( sin x ) = cos x
- d/dx ( cos x ) = - sin x
- d/dx ( tan x ) = sec² x
- d/dx ( cot x ) = - csc² x
- d/dx ( sec x ) = sec x . tan x
- d/dx ( csc x ) = - csc x . cot x
Similar questions