integral 1 divided by cos(x-a)cos(x-b) ?
Answers
Answered by
11
integration 1/cos(x -a).cos(x-b)
step1 :- sin{(x -b) -(x-a)} /sin(a-b) =1
put this in place of 1
e.g sin{(x-b) - (x -a)}/sin(a-b).cos(x-a).cos(x-b)
step2 :-
use sin(A-B) =sinA.cosB-cosA.sinB
e.g
{sin(x-b).cos(x-a) -sin(x-a).cos(x-b)}/sin(a-b).cos(x-a).cos(x-b)
1/sin(a-b) { tan(x-b) -tan(x-a) }
step3 :-
we know ,
according to basic integration ,
tan(x-a)dx =ln |sec(x-a) | +C
tab(x-b)dx =ln | sec(x-b)| + W
where C and W are constant.
put this
e.g.
1/sin(a -b) {ln |sec(x-b)| -ln |sec(x-a)| } +Q
=> 1/sin(a-b){ln(sec(x-b)/sec(x-a)}
we know ,
secx =1/cosx
so,
1/sin(a-b){ln.cos(x-a)/cos(x-b)}
( answer)
step1 :- sin{(x -b) -(x-a)} /sin(a-b) =1
put this in place of 1
e.g sin{(x-b) - (x -a)}/sin(a-b).cos(x-a).cos(x-b)
step2 :-
use sin(A-B) =sinA.cosB-cosA.sinB
e.g
{sin(x-b).cos(x-a) -sin(x-a).cos(x-b)}/sin(a-b).cos(x-a).cos(x-b)
1/sin(a-b) { tan(x-b) -tan(x-a) }
step3 :-
we know ,
according to basic integration ,
tan(x-a)dx =ln |sec(x-a) | +C
tab(x-b)dx =ln | sec(x-b)| + W
where C and W are constant.
put this
e.g.
1/sin(a -b) {ln |sec(x-b)| -ln |sec(x-a)| } +Q
=> 1/sin(a-b){ln(sec(x-b)/sec(x-a)}
we know ,
secx =1/cosx
so,
1/sin(a-b){ln.cos(x-a)/cos(x-b)}
( answer)
abhi178:
now you see answer
Answered by
6
f(x) dx = dx / [cos (x-a) cos (x-b) ]
Let (a+b)/2 = c, (a-b)/2 = d
2 cos(x-a) cos(x-b) = cos[2x-(a+b)] + Cos(a-b) = Cos(2x-2c) + cos2d
Let Tan(x-c) = z => dx = dz/(1+z²), cos2(x-c) = (1-z²)/(1+z²)
I = Cosec(a-b) Ln | Cos(x-a) / Cos(x-b) | + K
Let (a+b)/2 = c, (a-b)/2 = d
2 cos(x-a) cos(x-b) = cos[2x-(a+b)] + Cos(a-b) = Cos(2x-2c) + cos2d
Let Tan(x-c) = z => dx = dz/(1+z²), cos2(x-c) = (1-z²)/(1+z²)
I = Cosec(a-b) Ln | Cos(x-a) / Cos(x-b) | + K
Similar questions