Math, asked by nasenash, 4 months ago

integral 1 to 9(( x-1)÷√x)​

Answers

Answered by senboni123456
0

Step-by-step explanation:

We have,

 \int \limits^{9}_{1}  \frac{x - 1}{ \sqrt{x} } dx \\

 = \int \limits^{9}_{1}  ( \sqrt{x} -  \frac{1 }{ \sqrt{x} })dx \\

 = \int \limits^{9}_{1}  \sqrt{x}dx -  \int \limits^{9}_{1}  \frac{1}{ \sqrt{x} } dx \\

 = \int \limits^{9}_{1}  {x}^{ \frac{1}{2} } dx - \int \limits^{9}_{1}  {x}^{ -  \frac{1}{2} } dx \\

 = [ \frac{2}{3}  {x}^{ \frac{3}{2} } ]^{9}_{1} -  [2 \sqrt{x} ]^{9}_{1}

 =  \frac{2}{3}  ({9})^{ \frac{3}{2} }  -  \frac{2}{3}  ({1})^{ \frac{3}{2} }  - 2 \sqrt{9} + 2 \sqrt{1}   \\

 =  \frac{2}{3}  \times(3)^{3}  -  \frac{2}{3}  - 2 \times 3 + 2 \\

 = 2  \times ( {3})^{2}  -  \frac{2}{3}  - 6 + 2 \\

 = 18 - 6 + 2 -  \frac{2}{3}  \\

 = 14 -  \frac{2}{3}  \\

 =  \frac{40}{3}  \\

Similar questions