Math, asked by indunandashaji, 2 months ago

integral -1 to1 e^|x|

Answers

Answered by mathdude500
7

\large\underline{\sf{Solution-}}

Given integral is

\rm :\longmapsto\:\displaystyle\int_{ - 1}^1\rm  {e}^{ |x| } \: dx

Let us assume that

\rm :\longmapsto\:I  \: = \:  \displaystyle\int_{ - 1}^1\rm  {e}^{ |x| } \: dx

We know,

\begin{gathered}\begin{gathered}\bf\: \rm :\longmapsto\: |x|  = \begin{cases} &\sf{ - x \:  \: if \: x \:  <  \: 0} \\ &\sf{x \:  \: if \: x \:  \geqslant  \: 0} \end{cases}\end{gathered}\end{gathered}

So, given integral can be rewritten as

\rm :\longmapsto\:I  \: = \:  \displaystyle\int_{ - 1}^0\rm  {e}^{ |x| } \: dx + \:\displaystyle\int_0^1\rm  {e}^{ |x| } \: dx

\rm :\longmapsto\:I  \: = \:  \displaystyle\int_{ - 1}^0\rm  {e}^{ - x } \: dx + \:\displaystyle\int_0^1\rm  {e}^{x} \: dx

We know,

 \boxed{ \bf{\displaystyle\int\rm  {e}^{x} dx \:  =  \:  {e}^{x} + c }}

So, above integral can be rewritten as

\rm :\longmapsto\:I =\bigg[\dfrac{ {e}^{ - x} }{ - 1} \bigg]_0^1  + \bigg[ {e}^{x} \bigg]_0^1

\rm :\longmapsto\:I =  - ( {e}^{0} -  {e}^{ - ( - 1)}) + ( {e}^{1}  -  {e}^{0})

\rm :\longmapsto\:I =  - ( {e}^{0} -  {e}^{1}) + ( {e}^{1}  -  {e}^{0})

\rm :\longmapsto\:I =   ( {e}^{1} -  {e}^{0}) + ( {e}^{1}  -  {e}^{0})

\rm :\longmapsto\:I =   2( {e} -  1)

Additional Information :-

 \boxed{ \bf{ \displaystyle\int_a^b\rm \: f(x) \: dx =\displaystyle\int_a^b\rm \: f(y) \: dy  }}

 \boxed{ \bf{ \displaystyle\int_a^b\rm \: f(x) \: dx = - \displaystyle\int_b^a\rm \: f(x) \: dx  }}

 \boxed{ \bf{ \displaystyle\int_0^a\rm \: f(x) \: dx = \displaystyle\int_0^a\rm \: f(a - x) \: dx  }}

 \boxed{ \bf{ \displaystyle\int_a^b\rm \: f(x) \: dx =\displaystyle\int_a^b\rm \: f(a + b - x) \: dx  }}

 \boxed{ \bf{ \displaystyle\int_0^{2a}\rm \: f(x) \: dx = 2\displaystyle\int_0^a\rm \: f(x) \: dx  \: if \: f(2a - x) = f(x) }}

 \boxed{ \bf{ \displaystyle\int_0^{2a}\rm \: f(x) \: dx = 0  \: if \: f(2a - x) =  - f(x) }}

 \boxed{ \bf{ \displaystyle\int_{ - a}^{a}\rm \: f(x) \: dx = 0  \: if \: f( - x) =  - f(x) }}

 \boxed{ \bf{ \displaystyle\int_{ - a}^{a}\rm \: f(x) \: dx = 2 \displaystyle\int_0^a\rm \: f(x) \: dx \: if \: f( - x) =  f(x) }}

Answered by Sweetheart4701
4

Step-by-step explanation:

satu here hope u remember me if u r on in sta my I'd is sattu_4701

Similar questions