Math, asked by siricnunna, 5 months ago

integral √(1+x^2) dx​

Answers

Answered by senboni123456
0

Step-by-step explanation:

 i = \int \sqrt{1 +  {x}^{2} } dx \\

i =   \int \sqrt{1 +  {x}^{2} } .1dx \\

Now, by integration by parts we have,

  i=  \sqrt{1 +  {x}^{2} }  \int1dx  -  \int( \frac{d}{dx} ( \sqrt{1 +  {x}^{2} } ) \int1dx)dx \\

i = x \sqrt{1 +  {x}^{2} }  -  \int \frac{2x}{2 \sqrt{1 +  {x}^{2} } }.xdx \\

i =  x \sqrt{1 +  {x}^{2} }  -  \int \frac{1 +  {x}^{2}  - 1}{ \sqrt{1 +  {x}^{2} } } dx \\

i = x \sqrt{1 +  {x}^{2} }  -  \int \sqrt{1 +  {x}^{2} } dx +  \int \frac{1}{ \sqrt{1 +  {x}^{2} } } dx \\

i = x \sqrt{1 +  {x}^{2} }  - i +  \tan^{ - 1} (x)

 \implies2i = x \sqrt{1 +  {x}^{2} }  +  \tan^{ - 1} (x)  \\

 \implies \: i =  \frac{x}{2}  \sqrt{1 +  {x}^{2} }  +  \frac{1}{2}  \tan^{ - 1} (x)  \\

So,

the required integral is

 \frac{x}{2}  \sqrt{1 +  {x}^{2} }  +  \frac{1}{2}  \tan^{ - 1} (x)  \\

Similar questions