Math, asked by davkharyogita29, 5 months ago

integral 1/ √x^2-x-1 dx

Answers

Answered by Anonymous
10

Solution

We have

 \to \sf \int \dfrac{1}{ \sqrt{ {x}^{2}  - x - 1} } dx \\

For Solving this type of question we have to convert into prefect square

Now Take

 \sf \to \:  {x}^{2}  - x - 1 = 0

 \sf  \to {x}^{2}  - x = 1

 \sf \to \:  {x}^{2}  - x +  \bigg( \dfrac{1}{2}  \bigg) ^{2}  -  \bigg( \dfrac{1}{2}  \bigg) ^{2}  = 1

  \sf \to \:  \bigg(x -  \dfrac{1}{2}  \bigg) ^{2}  -  \bigg( \dfrac{1}{2}  \bigg)^{2}  = 1

 \sf \to \:  \bigg(x -  \dfrac{1}{2}  \bigg) ^{2}  = 1 +  \dfrac{1}{4}

 \sf \to \:  \bigg(x -  \dfrac{1}{2}  \bigg) ^{2}  =  \dfrac{5}{4}

 \sf \to \bigg(x -  \dfrac{1}{2}  \bigg) ^{2}  -  \bigg( \dfrac{ \sqrt{5} }{2}  \bigg) ^{2}

Now we can write as

 \sf \to \:  {x}^{2}  - x - 1 = \bigg(x -  \dfrac{1}{2}  \bigg) ^{2}  -  \bigg( \dfrac{ \sqrt{5} }{2}  \bigg) ^{2}

\to \sf \int \dfrac{1}{  \sqrt{ \bigg(x -  \dfrac{1}{2}  \bigg) ^{2}  -  \bigg( \dfrac{ \sqrt{5} }{2}  \bigg) ^{2}}  } dx \\

Now using Loving Intergrals

 \sf \to \:  \int \:  \dfrac{dx}{ \sqrt{ {x}^{2} -  {a}^{2}  } }  = ln(x +  \sqrt{ {x}^{2}  - a^{2}} )  + \: c \\

By comparing we get

 \sf \to \: x =  x -  \dfrac{1}{2}  \:  \:  \: and \:  \: a \:  =  \dfrac{ \sqrt{5} }{2}

put the value we get

 \sf \to ln \bigg \{ \bigg(x -  \dfrac{1}{2}  \bigg) +  \sqrt{ \bigg(x -  \dfrac{1}{2}  \bigg) ^{2}  -  \bigg( \dfrac{ \sqrt{5} }{2}   \bigg)^{2} }  \bigg \} + c

Answer

 \sf \to ln \bigg \{ \bigg(x -  \dfrac{1}{2}  \bigg) +  \sqrt{ \bigg(x -  \dfrac{1}{2}  \bigg) ^{2}  -  \bigg( \dfrac{ \sqrt{5} }{2}   \bigg)^{2} }  \bigg \} + c

Similar questions