Math, asked by ar6700484gmailcom, 1 month ago

Integral 2^1/x/x^2dx=k.2^1/x then K is equal to​

Answers

Answered by senboni123456
2

Answer:

Step-by-step explanation:

We have,

\tt{\displaystyle\int\dfrac{2^{1/x}}{x^2}\,dx=k\cdot2^{1/x}+C}

\sf{\blue{Let\,\,\dfrac{1}{x}=t}}\\\sf{\implies\blue{-\dfrac{1}{x^2}\,dx=dt}}\\\sf{\implies\blue{\dfrac{1}{x^2}\,dx=-dt}}

So,

\tt{-\displaystyle\int2^{t}\,dt=k\cdot2^{1/x}+C}

\tt{\implies-\dfrac{2^{t}}{\ln(2)}+C=k\cdot2^{1/x}+C}

\tt{\implies-\dfrac{1}{\ln(2)}\cdot2^{1/x}+C=k\cdot2^{1/x}+C}

\tt{\implies-\dfrac{1}{\log_{e}(2)}\cdot2^{1/x}+C=k\cdot2^{1/x}+C}

\tt{\implies-\log_{2}(e)\cdot2^{1/x}+C=k\cdot2^{1/x}+C}

On comparing,

\sf{k=-log_{2}(e)}

Similar questions