Math, asked by davkharyogita29, 4 months ago

integral 2x+1/x2-3x+2 DX can be used partial fraction




Answers

Answered by Anonymous
10

Solution:-

We have

 \sf \implies \:  \int \dfrac{2x + 1}{ {x}^{2} - 3x + 2 } dx \\

Now Take

 \implies \sf \:  {x}^{2}  - 3x + 2

When we factories the polynomial we get

 \implies \sf \:  {x}^{2}  - 3x + 2  = (x - 1)(x - 2)

we can write as

 \sf \implies \:  \int \dfrac{2x + 1}{(x - 1)(x - 2)}dx \\

Now using partial Fraction method, So Take

 \sf\implies \:  \dfrac{2x + 1}{(x - 1)(x - 2)}  \:  \:  =  \dfrac{A}{(x - 1)}  +  \dfrac{B}{(x - 2)}

Now Take LCM

 \sf \implies \:  \dfrac{2x + 1}{(x - 1)(x - 2)}  =  \dfrac{A(x - 2) +B(x - 1) }{(x - 1)(x - 2)}

\sf \implies \:  \dfrac{2x + 1}{ \cancel{(x - 1)(x - 2)}}  =  \dfrac{A(x - 2) +B(x - 1) }{ \cancel{(x - 1)(x - 2)}}

 \sf \implies \: 2x + 1 = A(x - 2) + B(x - 1)

Now when x = 2

 \sf \implies \: 2 \times 2+ 1 = A(2 - 2) + B(2 - 1)

 \sf \implies \: 5 = 0 + B \implies \: B = 5

Now when x = 1

 \sf \implies \: 2 \times 1 + 1 = A(1 - 2) + 0

 \sf \implies \: 3 =  - A \implies \:A =  - 3

Now put the value of A and B on

\sf\implies \:  \dfrac{2x + 1}{(x - 1)(x - 2)}  \:  \:  =  \dfrac{ - 3}{(x - 1)}  +  \dfrac{5}{(x - 2)}

 \sf \implies  \int\dfrac{ - 3}{(x - 1)}dx  +   \int\dfrac{5}{(x - 2)} dx \\

 \sf \implies \:  - 3 \int \dfrac{1}{x - 1} dx + 5 \int \dfrac{1}{x - 2} dx \\

 \sf \implies \:  - 3 \ln(x - 1) + 5 \ln(x - 2) + c

Answer

 \sf \implies \:  - 3 \ln(x - 1) + 5 \ln(x - 2) + c

Similar questions