Math, asked by vamsikrishna20027, 5 months ago

integral (2x-3)⁸ dx. ​

Answers

Answered by mathdude500
5

 \sf \: Let \: I \:  = \displaystyle\int \tt \:  {(2x - 3)}^{8} dx

As we know that,

By using substitution method, we get.

  • 2x - 3 = t.

Differentiate w.r.t x, we get.

  • ⇒ 2 dx = dt.

  • ⇒ dx = dt/2.

So, given integral can be rewritten as

\rm :\longmapsto\:I \:  = \displaystyle\int \tt \:  {t}^{8}  \: \dfrac{dt}{2}

\rm :\longmapsto\: = \dfrac{ {t}^{8 + 1} }{(8 + 1) \times 2}  + c

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \boxed{ \sf \:  \because \:  \displaystyle\int \sf \:  {x}^{n}dx = \dfrac{ {x}^{n + 1} }{n + 1}   + c}

\rm :\longmapsto\: =  \tt \: \dfrac{ {(2x  -  3)}^{9} }{18}  + c

─━─━─━─━─━─━─━─━─━─━─━─━─

Additional Information :-

 \boxed{ \bf{ \:\displaystyle\int \sf \: \dfrac{1}{x} dx =  log(x)  + c}}

 \boxed{ \bf{ \:\displaystyle\int \sf \: sinxdx =  - cosx + c}}

 \boxed{ \bf{ \:\displaystyle\int \sf \: cosxdx = sinx + c}}

 \boxed{ \bf{ \:\displaystyle\int \sf \:  {sec}^{2}x = tanx + c}}

 \boxed{ \bf{ \:\displaystyle\int \sf \:  {cosec}^{2}xdx =  - cotx}}

 \boxed{ \bf{ \:\displaystyle\int \sf \:  {e}^{x}dx  =  {e}^{x}  + c}}

Similar questions