Math, asked by podilapusowjanya653, 3 days ago

integral 2x+3/(x+3)(x^+4)dx,notequal to-3​

Answers

Answered by kaurharveer326
0

Answer:

Solution

Verified by Toppr

∫x2(1−x21)dx

=∫(x2−1)dx

=2+1x2+1−x+C

=3x3−x+C

where C is constant

Step-by-step explanation:

HOPE THIS WILL HELP MARK ME AS BRAINLIEST

please

PLEASE

Answered by mathdude500
6

Appropriate Question

Evaluate the following integral

\rm :\longmapsto\:\displaystyle\int\sf  \frac{2x + 3}{(x + 3)( {x}^{2}  + 4)}dx

\large\underline{\sf{Solution-}}

Given integral is

\rm :\longmapsto\:\displaystyle\int\sf  \frac{2x + 3}{(x + 3)( {x}^{2}  + 4)}dx

To evaluate this integral, we use the Method of Partial Fractions.

So, Let assume that

\rm :\longmapsto\:\dfrac{2x + 3}{(x + 3)( {x}^{2} + 4)}  = \dfrac{a}{x + 3}  + \dfrac{bx + c}{ {x}^{2}  + 4}  -  -  - (1)

\rm :\longmapsto\:2x + 3 = a({x}^{2} + 4) + (bx + c)(x + 3) -  -  - (2)

On substituting x = - 3, we get

\rm :\longmapsto\: - 6 + 3 = a({( - 3)}^{2} + 4) + (bx + c)( - 3 + 3)

\rm :\longmapsto\: - 3 = a(9 + 4)

\rm\implies \: \: \boxed{\tt{  \:  \: a \:  =  \:  -  \:  \frac{3}{13} \:  \: }} \\

On substituting x = 0, in equation (2), we get

\rm :\longmapsto\:0 + 3 = a(0 + 4) + (0 + c)(0 + 3)

\rm :\longmapsto\:3 = 4a + 3c

\rm :\longmapsto\:3 = -  4 \times\dfrac{3}{13}  + 3c

\rm :\longmapsto\:3 = - \dfrac{12}{13}  + 3c

\rm :\longmapsto\:3 + \dfrac{12}{13} =  3c

\rm :\longmapsto\: \dfrac{39 + 12}{13} =  3c

\rm :\longmapsto\: \dfrac{51}{13} =  3c

\rm\implies \:\boxed{\tt{  \:  \: c \:  =  \:  \frac{17}{13}  \:  \: }} \\

On substituting x = 1, in equation (2), we get

\rm :\longmapsto\:2 + 3 = a(1 + 4) + (b + c)(1+ 3)

\rm :\longmapsto\:5 = 5a + 4b + 4c

\rm :\longmapsto\:5 =  -  \dfrac{15}{13}  + 4b +  \dfrac{68}{13}

\rm :\longmapsto\:4b = 5 + \dfrac{15}{13}  - \dfrac{68}{13}

\rm :\longmapsto\:4b =   \dfrac{65 + 15 - 68}{13}

\rm :\longmapsto\:4b =   \dfrac{80 - 68}{13}

\rm :\longmapsto\:4b =   \dfrac{12}{13}

\rm\implies \:\boxed{\tt{  \:  \: b \:  =  \:  \frac{3}{13} \:  \: }} \\

So, on substituting the values of a, b and c, in equation (1), we get

\rm :\longmapsto\:\dfrac{2x + 3}{(x + 3)( {x}^{2} + 4)}  = \dfrac{ - 3}{13(x + 3)}  + \dfrac{3x + 17}{13( {x}^{2}  + 4)}

On integrating both sides, we get

\rm :\longmapsto\:\displaystyle\int\sf \dfrac{2x + 3}{(x + 3)( {x}^{2} + 4)}dx =\displaystyle\int\sf  \dfrac{ - 3}{13(x + 3)}dx+\displaystyle\int\sf \dfrac{3x + 17}{13( {x}^{2}  + 4)}dx

\rm \:  =  \:  - \dfrac{1}{3}\displaystyle\int\sf  \frac{1}{x + 3}dx + \dfrac{3}{13}\displaystyle\int\sf  \frac{x}{ {x}^{2}  + 4}dx + \dfrac{17}{13}\displaystyle\int\sf  \frac{dx}{ {x}^{2}  + 4}

can be further rewritten as

\rm \:  =  \:  - \dfrac{1}{3}\displaystyle\int\sf  \frac{1}{x + 3}dx + \dfrac{3}{26}\displaystyle\int\sf  \frac{2x}{ {x}^{2}  + 4}dx + \dfrac{17}{13}\displaystyle\int\sf  \frac{dx}{ {x}^{2}  + 4}

We know,

\boxed{\tt{ \displaystyle\int\sf  \frac{1}{x} \: dx \:  =  \: log |x|  + c}}

\boxed{\tt{ \displaystyle\int\sf  \frac{1}{ {x}^{2}  +  {a}^{2} } \: dx \:  =  \:  \frac{1}{a}  {tan}^{ - 1} \frac{x}{a}  + c}}

\boxed{\tt{ \displaystyle\int\sf  \frac{f'(x)}{f(x)} \: dx \:  =  \: log |f(x)|  + c}}

So, using this result, we get

\rm \:  =  \:  - \dfrac{3}{13} log |x + 3|  + \dfrac{3}{26}log | {x}^{2}  + 4|  + \dfrac{17}{13} \times \dfrac{1}{2} {tan}^{ - 1}  \dfrac{x}{2} + c'

\rm \:  =  \:  - \dfrac{3}{13} log |x + 3|  + \dfrac{3}{26}log | {x}^{2}  + 4|  + \dfrac{17}{26} {tan}^{ - 1}  \dfrac{x}{2} + c'

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

MORE TO KNOW

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}

Similar questions