Math, asked by faizanaila2211, 6 months ago

integral (5tanx-2cotx)^2dx​

Answers

Answered by Anonymous
14

I= integ.of (5tanx-2 cotx)^2.dx.

I=integ.of(25tan^2x-20.tanx.cotx+4.cot^2x).dx

I=integ.of [25(sec^2x-1)-20+4(cosec^2x-1)].dx

I=integ.of [25sec^2x-25–20+4cosec^2x-4].dx

I=integ.of[25sec^2x+4cosec^2x-49].dx

I=25tan x-4cot x -49x+C . ,Answer

[

hope it's help you ✔️

Answered by NirmalPandya
1

The value of the integral is \int\limits{(5tanx-2cotx)^2} \, dx=25tan x-4cot x -49x+C where C is the integration constant.

Given,

An expression: (5tanx-2cotx)^2.

To Find,

The value of the integral: \int\limits{(5tanx-2cotx)^2} \, dx.

Solution,

The method of finding the value of the integral is as follows -

We will simplify the given expression.

(5tanx-2cotx)^2=25tan^2x-20.tanx.cotx+4.cot^2x

=25(sec^2x-1)-20+4(cosec^2x-1) [Since tanx.cotx=1]

=25sec^2x-25-20+4cosec^2x-4= 25sec^2x+4cosec^2x-49

Now we will compute the value of the integral.

\int\limits{(5tanx-2cotx)^2} \, dx= \int\limits {(25sec^2x+4cosec^2x-49)} \, dx

=25tan x-4cot x -49x+C, where C is the integration constant.

Hence, the value of the integral is \int\limits{(5tanx-2cotx)^2} \, dx=25tan x-4cot x -49x+C where C is the integration constant.

#SPJ2

Similar questions