Math, asked by shanlangryntathiang6, 1 month ago


integral 6/x²-3x-2 please help to calculate this and explain step by step..​

Answers

Answered by amansharma264
6

EXPLANATION.

⇒ ∫6.dx/(x² - 3x - 2).

As we know that,

If the coefficient of Denominator > coefficient of numerator then we can apply partial fractions, we get.

In this question we apply partial fractions, we get.

⇒ x² - 3x - 2.

Factorizes the equation into middle term splits, we get.

⇒ x² - 2x - x - 2.

⇒ x(x - 2) + 1(x - 2).

⇒ (x + 1)(x - 2).

⇒ ∫6.dx/(x + 1)(x - 2).

⇒ ∫6.dx/(x + 1)(x - 2) = ∫A/(x + 1)dx + ∫B/(x - 2)dx.

⇒ 6/(x + 1)(x - 2) = A(x - 2) + B(x + 1)/(x - 2)(x + 1).

⇒ 6 = A(x - 2) + B(x + 1).

As we know that,

Put the value of x = 2 in equation, we get.

⇒ 6 = A(2 - 2) + B(2 + 1).

⇒ 6 = 0 + 3B.

⇒ B = 6/3.

⇒ B = 2.

Put the value of x = - 1 in equation, we get.

⇒ 6 = A(- 1 - 2) + B(- 1 + 1).

⇒ 6 = A(-3) + 0.

⇒ 6 = - 3A.

⇒ A = - 2.

Put the value in the main equation, we get.

⇒ ∫-2.dx/(x + 1) + ∫2.dx/(x - 2).

⇒ -2 ∫dx/(x + 1) + 2 ∫dx/(x - 2).

⇒ - 2 ㏑(x + 1) + 2 ㏑(x - 2) + C.

⇒ 2 ㏑(x - 2) - 2 ㏑(x + 1) + C.

                                                                                                                       

MORE INFORMATION.

Integration by parts.

(1) = If u and v are two functions of x then,

∫(u v)dx = u ∫(v dx) - ∫[(du/dx). (∫v dx)]dx.

From the first letter of the word.

I = Inverse trigonometric functions.

L = Logarithmic functions.

A = Algebraic functions.

T = Trigonometric functions.

E = Exponential functions.

We get a word = ILATE.

Therefore, first arrange the functions in the order according to letters of this word and then integrate by-parts.

(2) = ∫eˣ[f(x) + f'(x)]dx = eˣ f(x) + C.

(3) = ∫[x f'(x) + f(x)]dx = x f(x) + C.

Similar questions